
Xunrong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/278412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care, 2016, 39, 1230-1240.	4.3	498
2	Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nature Biotechnology, 2012, 30, 1217-1224.	9.4	351
3	Dendritic cells with TGF-beta1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2821-2826.	3.3	217
4	Tolerance Induced by Apoptotic Antigen-Coupled Leukocytes Is Induced by PD-L1+ and IL-10–Producing Splenic Macrophages and Maintained by T Regulatory Cells. Journal of Immunology, 2011, 187, 2405-2417.	0.4	182
5	ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14527-14532.	3.3	151
6	Immunotherapy of Type 1 Diabetes: Where Are We and Where Should We Be Going?. Immunity, 2010, 32, 488-499.	6.6	150
7	MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circulation Research, 2017, 121, 930-940.	2.0	144
8	National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes, 2016, 65, 3418-3428.	0.3	143
9	Improved Health-Related Quality of Life in a Phase 3 Islet Transplantation Trial in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care, 2018, 41, 1001-1008.	4.3	89
10	Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials, 2014, 35, 8887-8894.	5.7	77
11	Cutting Edge: TGF-β-Induced Expression of Foxp3 in T cells Is Mediated through Inactivation of ERK. Journal of Immunology, 2008, 180, 2757-2761.	0.4	68
12	Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. American Journal of Transplantation, 2021, 21, 1477-1492.	2.6	64
13	Ethylenecarbodiimide-Fixed Donor Splenocyte Infusions Differentially Target Direct and Indirect Pathways of Allorecognition for Induction of Transplant Tolerance. Journal of Immunology, 2012, 189, 804-812.	0.4	62
14	Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials, 2011, 32, 4517-4524.	5.7	53
15	A cell-specific nuclear receptor plays essential roles in adrenal and gonadal development. Endocrine Research, 1995, 21, 517-524.	0.6	49
16	THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. European Journal of Endocrinology, 2015, 173, R165-R183.	1.9	43
17	Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nature Communications, 2019, 10, 3495.	5.8	43
18	Preemptive Donor Apoptotic Cell Infusions Induce IFN-γ–Producing Myeloid-Derived Suppressor Cells for Cardiac Allograft Protection. Journal of Immunology, 2014, 192, 6092-6101.	0.4	37

Xunrong Luo

#	Article	IF	CITATIONS
19	Transient B-Cell Depletion Combined With Apoptotic Donor Splenocytes Induces Xeno-Specific T- and B-Cell Tolerance to Islet Xenografts. Diabetes, 2013, 62, 3143-3150.	0.3	31
20	Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight, 2020, 5, .	2.3	30
21	Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Frontiers in Immunology, 2020, 11, 945.	2.2	28
22	Preemptive Tolerogenic Delivery of Donor Antigens for Permanent Allogeneic Islet Graft Protection. Cell Transplantation, 2015, 24, 1155-1165.	1.2	25
23	Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Frontiers in Immunology, 2017, 8, 1428.	2.2	25
24	Evaluation of biomaterial scaffold delivery of IL-33 as a localized immunomodulatory agent to support cell transplantation in adipose tissue. Journal of Immunology and Regenerative Medicine, 2018, 1, 1-12.	0.2	25
25	Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clinical Immunology, 2015, 160, 14-23.	1.4	24
26	Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. American Journal of Transplantation, 2019, 19, 674-685.	2.6	24
27	Murine CMV induces type 1 IFN that impairs differentiation of MDSCs critical for transplantation tolerance. Blood Advances, 2018, 2, 669-680.	2.5	23
28	Moldâ€casted nonâ€degradable, islet macroâ€encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice. Biotechnology and Bioengineering, 2016, 113, 2485-2495.	1.7	19
29	Recipient Myd88 Deficiency Promotes Spontaneous Resolution of Kidney Allograft Rejection. Journal of the American Society of Nephrology: JASN, 2015, 26, 2753-2764.	3.0	18
30	Optimizing PLG nanoparticle-peptide delivery platforms for transplantation tolerance using an allogeneic skin transplant model. Biomaterials, 2019, 210, 70-82.	5.7	18
31	Differential Role of B Cells and IL-17 Versus IFN-Î ³ During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation, 2017, 101, 1801-1810.	0.5	17
32	Emerging approaches and technologies in transplantation: the potential game changers. Cellular and Molecular Immunology, 2019, 16, 334-342.	4.8	17
33	Monocytes prime autoreactive T cells after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H116-H123.	1.5	15
34	The role of human CD46 in early xenoislet engraftment in a dual transplant model. Xenotransplantation, 2019, 26, e12540.	1.6	11
35	Apoptotic cell-based therapies for promoting transplantation tolerance. Current Opinion in Organ Transplantation, 2018, 23, 552-558.	0.8	10
36	Donor apoptotic cell–based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. American Journal of Transplantation, 2020, 20, 2728-2739.	2.6	9

Xunrong Luo

#	Article	IF	CITATIONS
37	Human CD8+CD28â^' T Suppressor Cells Expanded by IL-15 In Vitro Suppress in an Allospecific and Programmed Cell Death Protein 1-Dependent Manner. Frontiers in Immunology, 2018, 9, 1442.	2.2	8
38	Rejection of xenogeneic porcine islets in humanized mice is characterized by graftâ€infiltrating Th17 cells and activated B cells. American Journal of Transplantation, 2020, 20, 1538-1550.	2.6	8
39	Murine cytomegalovirus dissemination but not reactivation in donor-positive/recipient-negative allogeneic kidney transplantation can be effectively prevented by transplant immune tolerance. Kidney International, 2020, 98, 147-158.	2.6	8
40	Impact of infection on transplantation tolerance. Immunological Reviews, 2019, 292, 243-263.	2.8	6
41	Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Frontiers in Immunology, 2020, 11, 869.	2.2	6
42	Apoptotic Donor Cells in Transplantation. Frontiers in Immunology, 2021, 12, 626840.	2.2	6
43	An elastin-based vasculogenic scaffold promotes marginal islet mass engraftment and function at an extrahepatic site. Journal of Immunology and Regenerative Medicine, 2019, 3, 1-12.	0.2	5
44	Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. Current Transplantation Reports, 2017, 4, 270-279.	0.9	4
45	MCMV Dissemination from Latently-Infected Allografts Following Transplantation into Pre-Tolerized Recipients. Pathogens, 2020, 9, 607.	1.2	4
46	Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. American Journal of Transplantation, 2021, 21, 515-524.	2.6	4
47	Bone marrow-derived AXL tyrosine kinase promotes mitogenic crosstalk and cardiac allograft vasculopathy. Journal of Heart and Lung Transplantation, 2021, 40, 435-446.	0.3	4
48	Two Rare Forms of Renal Allograft Glomerulopathy During Cytomegalovirus Infection and Treatment. American Journal of Kidney Diseases, 2008, 51, 1047-1051.	2.1	3
49	A Novel Method for Anti-HLA Antibody Detection Using Personalized Peptide Arrays. Transplantation Direct, 2016, 2, e109.	0.8	2
50	Personalized Peptide Arrays for Detection of HLA Alloantibodies in Organ Transplantation. Journal of Visualized Experiments, 2017, , .	0.2	2
51	Acute and chronic phagocyte determinants of cardiac allograft vasculopathy. Seminars in Immunopathology, 2018, 40, 593-603.	2.8	2
52	Cellular Therapies in Solid Organ Allotransplantation: Promise and Pitfalls. Frontiers in Immunology, 2021, 12, 714723.	2.2	2
53	Research Highlights. Transplantation, 2021, 105, 2330-2331.	0.5	0
54	Research Highlights. Transplantation, 2022, 106, 4-5.	0.5	0

#	Article	IF	CITATIONS
55	Research Highlights. Transplantation, 2022, 106, 898-899.	0.5	0