David Prangishvili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2783990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viruses of the Archaea: a unifying view. Nature Reviews Microbiology, 2006, 4, 837-848.	13.6	344
2	Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere. Microbiology and Molecular Biology Reviews, 2011, 75, 610-635.	2.9	210
3	Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Research, 2018, 244, 181-193.	1.1	175
4	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2018, 163, 1125-1129.	0.9	172
5	The enigmatic archaeal virosphere. Nature Reviews Microbiology, 2017, 15, 724-739.	13.6	169
6	Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biology, 2014, 12, 36.	1.7	156
7	The archeoviruses. FEMS Microbiology Reviews, 2011, 35, 1035-1054.	3.9	150
8	Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles, 1998, 2, 131-140.	0.9	148
9	The Wonderful World of Archaeal Viruses. Annual Review of Microbiology, 2013, 67, 565-585.	2.9	145
10	Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2020, 165, 1253-1260.	0.9	144
11	Genome Analyses of Icelandic Strains of <i>Sulfolobus islandicus</i> , Model Organisms for Genetic and Virus-Host Interaction Studies. Journal of Bacteriology, 2011, 193, 1672-1680.	1.0	139
12	AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology, 2003, 315, 68-79.	1.1	124
13	Sequences and Replication of Genomes of the Archaeal Rudiviruses SIRV1 and SIRV2: Relationships to the Archaeal Lipothrixvirus SIFV and Some Eukaryal Viruses. Virology, 2001, 291, 226-234.	1.1	112
14	Structural and Genomic Properties of the Hyperthermophilic Archaeal Virus ATV with an Extracellular Stage of the Reproductive Cycle. Journal of Molecular Biology, 2006, 359, 1203-1216.	2.0	110
15	Virus-mediated archaeal hecatomb in the deep seafloor. Science Advances, 2016, 2, e1600492.	4.7	107
16	A virus that infects a hyperthermophile encapsidates A-form DNA. Science, 2015, 348, 914-917.	6.0	98
17	Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environmental Microbiology, 2009, 11, 2849-2862.	1.8	85
18	Massive Activation of Archaeal Defense Genes during Viral Infection. Journal of Virology, 2013, 87, 8419-8428.	1.5	84

#	Article	IF	CITATIONS
19	Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. Journal of Virology, 2016, 90, 11043-11055.	1.5	84
20	Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2016, 161, 1095-1099.	0.9	83
21	Diversity of virus–host systems in hypersaline Lake Retba, Senegal. Environmental Microbiology, 2011, 13, 1956-1972.	1.8	82
22	Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13386-13391.	3.3	78
23	pING Family of Conjugative Plasmids from the Extremely Thermophilic Archaeon Sulfolobus islandicus: Insights into Recombination and Conjugation in Crenarchaeota. Journal of Bacteriology, 2000, 182, 7014-7020.	1.0	74
24	Viruses of hyperthermophilic Crenarchaea. Trends in Microbiology, 2005, 13, 535-542.	3.5	74
25	Unification of the Globally Distributed Spindle-Shaped Viruses of the Archaea. Journal of Virology, 2014, 88, 2354-2358.	1.5	72
26	Familial Relationships in Hyperthermo- and Acidophilic Archaeal Viruses. Journal of Virology, 2010, 84, 4747-4754.	1.5	66
27	First Insights into the Entry Process of Hyperthermophilic Archaeal Viruses. Journal of Virology, 2013, 87, 13379-13385.	1.5	66
28	Eukaryotic-Like Virus Budding in <i>Archaea</i> . MBio, 2016, 7, .	1.8	65
29	Conjugation in Archaea: Frequent Occurrence of Conjugative Plasmids inSulfolobus. Plasmid, 1998, 40, 190-202.	0.4	61
30	Analysis of metagenomic data reveals common features of halophilic viral communities across continents. Environmental Microbiology, 2016, 18, 889-903.	1.8	59
31	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2017, 162, 1153-1157.	0.9	57
32	Provirus Induction in Hyperthermophilic Archaea: Characterization of Aeropyrum pernix Spindle-Shaped Virus 1 and Aeropyrum pernix Ovoid Virus 1. Journal of Bacteriology, 2011, 193, 5412-5419.	1.0	56
33	Genomics and genetics of <i>Sulfolobus islandicus</i> LAL14/1, a model hyperthermophilic archaeon. Open Biology, 2013, 3, 130010.	1.5	55
34	Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids. Journal of Virology, 2015, 89, 11681-11691.	1.5	54
35	Structure and Genome Organization of AFV2, a Novel Archaeal Lipothrixvirus with Unusual Terminal and Core Structures. Journal of Bacteriology, 2005, 187, 3855-3858.	1.0	51
36	Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nature Communications, 2019, 10, 5204.	5.8	50

#	Article	IF	CITATIONS
37	Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles, 2014, 18, 877-893.	0.9	48
38	An extensively glycosylated archaeal pilus survives extreme conditions. Nature Microbiology, 2019, 4, 1401-1410.	5.9	46
39	A new proposed taxon for double-stranded DNA viruses, the order "Ligamenvirales― Archives of Virology, 2012, 157, 791-795.	0.9	45
40	Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3829-3834.	3.3	45
41	Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biology, 2021, 19, e3001442.	2.6	44
42	Viruses in acidic geothermal environments of the Kamchatka Peninsula. Research in Microbiology, 2008, 159, 358-366.	1.0	41
43	Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles. Environmental Microbiology, 2010, 12, 2918-2930.	1.8	39
44	Integrated mobile genetic elements in Thaumarchaeota. Environmental Microbiology, 2019, 21, 2056-2078.	1.8	38
45	Genomics and biology of Rudiviruses, a model for the study of virus–host interactions in Archaea. Biochemical Society Transactions, 2013, 41, 443-450.	1.6	37
46	Model for a novel membrane envelope in a filamentous hyperthermophilic virus. ELife, 2017, 6, .	2.8	37
47	Abundant Lysine Methylation and N-Terminal Acetylation in Sulfolobus islandicus Revealed by Bottom-Up and Top-Down Proteomics. Molecular and Cellular Proteomics, 2016, 15, 3388-3404.	2.5	36
48	Structure and assembly of archaeal viruses. Advances in Virus Research, 2020, 108, 127-164.	0.9	35
49	A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proceedings of the United States of America, 2016, 113, 2478-2483.	3.3	32
50	Unique architecture of thermophilic archaeal virus APBV1 and its genome packaging. Nature Communications, 2017, 8, 1436.	5.8	31
51	Structures of filamentous viruses infecting hyperthermophilic archaea explain DNA stabilization in extreme environments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19643-19652.	3.3	29
52	New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME Journal, 2020, 14, 1821-1833.	4.4	29
53	Novel haloarchaeal viruses from Lake Retba infecting <i>Haloferax</i> and <i>Halorubrum</i> species. Environmental Microbiology, 2019, 21, 2129-2147.	1.8	28
54	Exceptional virion release mechanism: one more surprise from archaeal viruses. Current Opinion in Microbiology, 2011, 14, 315-320.	2.3	26

#	Article	IF	CITATIONS
55	Structural conservation in a membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile. Nature Communications, 2018, 9, 3360.	5.8	24
56	The structures of two archaeal type IV pili illuminate evolutionary relationships. Nature Communications, 2020, 11, 3424.	5.8	24
57	A packing for A-form DNA in an icosahedral virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22591-22597.	3.3	23
58	<i>Adnaviria</i> : a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. Journal of Virology, 2021, 95, e0067321.	1.5	22
59	A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea. Journal of Virology, 2017, 91, .	1.5	21
60	Archaeal viruses: living fossils of the ancient virosphere?. Annals of the New York Academy of Sciences, 2015, 1341, 35-40.	1.8	20
61	New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environmental Microbiology, 2019, 21, 2002-2014.	1.8	18
62	Protein-Protein Interactions Leading to Recruitment of the Host DNA Sliding Clamp by the Hyperthermophilic Sulfolobus islandicus Rod-Shaped Virus 2. Journal of Virology, 2014, 88, 7105-7108.	1.5	16
63	Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease. Biology Direct, 2015, 10, 65.	1.9	16
64	Going to extremes – a metagenomic journey into the dark matter of life. FEMS Microbiology Letters, 2021, 368, .	0.7	16
65	Structure of a filamentous virus uncovers familial ties within the archaeal virosphere. Virus Evolution, 2020, 6, veaa023.	2.2	13
66	Mysterious hexagonal pyramids on the surface of Pyrobaculum cells. Biochimie, 2015, 118, 365-367.	1.3	10
67	DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses, 2017, 9, 190.	1.5	10
68	Centennial celebration of the bacteriophage research. Research in Microbiology, 2018, 169, 479-480.	1.0	9
69	ICTV Virus Taxonomy Profile: Bicaudaviridae. Journal of General Virology, 2018, 99, 864-865.	1.3	9
70	Rolling-circle replication initiation protein of haloarchaeal sphaerolipovirus SNJ1 is homologous to bacterial transposases of the IS91 family insertion sequences. Journal of General Virology, 2018, 99, 416-421.	1.3	8
71	A filamentous archaeal virus is enveloped inside the cell and released through pyramidal portals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
72	Egress of archaeal viruses. Cellular Microbiology, 2021, 23, e13394.	1.1	7

#	Article	IF	CITATIONS
73	ICTV Virus Taxonomy Profile: Guttaviridae. Journal of General Virology, 2018, 99, 290-291.	1.3	7
74	ICTV Virus Taxonomy Profile: Tristromaviridae. Journal of General Virology, 2019, 100, 135-136.	1.3	7
75	New insights into the diversity and evolution of the archaeal mobilome from three complete genomes of <i>Saccharolobus shibatae</i> . Environmental Microbiology, 2021, 23, 4612-4630.	1.8	5
76	ICTV Virus Taxonomy Profile: Globuloviridae. Journal of General Virology, 2018, 99, 1357-1358.	1.3	5
77	ICTV Virus Taxonomy Profile: Ampullaviridae. Journal of General Virology, 2018, 99, 288-289.	1.3	4
78	ICTV Virus Taxonomy Profile: Spiraviridae. Journal of General Virology, 2020, 101, 240-241.	1.3	3
79	ICTV Virus Taxonomy Profile: Clavaviridae. Journal of General Virology, 2019, 100, 1267-1268.	1.3	2
80	ICTV Virus Taxonomy Profile: Portogloboviridae. Journal of General Virology, 2021, 102, .	1.3	1