Samuel W Thomas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2783527/samuel-w-thomas-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79	6,882	27	82
papers	citations	h-index	g-index
84	7,370 ext. citations	8.9	6.07
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
79	Red-Emitting, Acene-Doped Conjugated Polymer Nanoparticles that Respond Ratiometrically to Photogenerated O. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 13658-13665	9.5	1
78	Optimizing the self-assembly of conjugated polymers and small molecules through structurally programmed non-covalent control. <i>Journal of Polymer Science</i> , 2021 , 59, 1643-1663	2.4	4
77	Bridging the Void: Halogen Bonding and Aromatic Interactions to Program Luminescence and Electronic Properties of Econjugated Materials in the Solid State. <i>Chemistry of Materials</i> , 2021 , 33, 6640-	-8661	4
76	Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 9191-9209	3.9	11
75	Side Chain Regioisomers that Dictate Optical Properties and Mechanofluorochromism through Crystal Packing. <i>Chemistry of Materials</i> , 2020 , 32, 5785-5801	9.6	10
74	Turning on solid-state phosphorescence of platinum acetylides with aromatic stacking. <i>Chemical Communications</i> , 2020 , 56, 6854-6857	5.8	4
73	Resistance to Unwanted Photo-Oxidation of Multi-Acene Molecules. <i>Journal of Organic Chemistry</i> , 2020 , 85, 12731-12739	4.2	4
72	Combining Top-Down and Bottom-Up with Photodegradable Layer-by-Layer Films. <i>Langmuir</i> , 2019 , 35, 13791-13804	4	7
71	Programmed twisting of phenyleneBthynylene linkages from aromatic stacking interactions. Journal of Materials Chemistry C, 2019 , 7, 1198-1207	7.1	6
70	Directed Polymorphism and Mechanofluorochromism of Conjugated Materials through Weak Non-Covalent Control. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8316-8324	7.1	18
69	Spectroscopy and Reactivity of Dialkoxy Acenes. <i>Chemistry - A European Journal</i> , 2019 , 25, 10400-10407	4.8	6
68	Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 2814-2820	9.5	13
67	Tuning the Negative Photochromism of Water-Soluble Spiropyran Polymers. <i>Macromolecules</i> , 2018 , 51, 8027-8037	5.5	34
66	Small Changes With Big Consequences: Swapping Two Atoms In Side Chains Changes Phenylene-Ethynylene Packing And Fluorescence. <i>Chemistry - A European Journal</i> , 2018 , 24, 16987-1699	4 ^{.8}	3
65	Tuning the Key Properties of Singlet Oxygen-Responsive Acene-Doped Conjugated Polymer Nanoparticles. <i>ChemPhotoChem</i> , 2018 , 2, 632-639	3.3	7
64	Reversible mechanofluorochromism of aniline-terminated phenylene ethynylenes. <i>Chemical Science</i> , 2018 , 9, 5415-5426	9.4	28
63	Light-Controlled Selective Disruption, Multilevel Patterning, and Sequential Release with Polyelectrolyte Multilayer Films Incorporating Four Photocleavable Chromophores. <i>Chemistry of Materials</i> , 2017 , 29, 2951-2960	9.6	23

(2015-2017)

62	Ratiometric Singlet Oxygen Detection in Water Using Acene-Doped Conjugated Polymer Nanoparticles. <i>ACS Applied Materials & Discrete States and Polymer States are states and Polymer States and Polymer States and Polymer States are states and Polymer States are states and Polymer </i>	9.5	28
61	Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. <i>ACS Applied Materials & Discourse State of Combined Materials & Discourse State</i>	9.5	33
60	Substituent Effects That Control Conjugated Oligomer Conformation through Non-covalent Interactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5164-5174	16.4	39
59	UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. <i>Langmuir</i> , 2017 , 33, 10877-10885	4	6
58	Forcing Ladderenes into Plastic Semiconductors with Mechanochemistry. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15196-15198	16.4	3
57	Berfflrung von Ladderenen in plastische Halbleiter mithilfe der Mechanochemie. <i>Angewandte Chemie</i> , 2017 , 129, 15394-15396	3.6	
56	Directly Photopatternable Polythiophene as Dual-Tone Photoresist. <i>Macromolecules</i> , 2017 , 50, 7258-72	63 .5	6
55	Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays. <i>Nature Communications</i> , 2017 , 8, 16057	17.4	16
54	Triggered Release of Encapsulated Cargo from Photoresponsive Polyelectrolyte Nanocomplexes. <i>ACS Applied Materials & District Science (Control of the Cargo from Photoresponsive Polyelectrolyte Nanocomplexes)</i>	9.5	16
53	Stimuli-Responsive Free-Standing Layer-By-Layer Films. <i>Advanced Materials</i> , 2016 , 28, 715-21	24	29
52	Cycloadditions of Singlet Oxygen for Responsive Fluorescent Polymers. <i>Synlett</i> , 2016 , 27, 355-368	2.2	3
51	Stimuli-responsive side chains for new function from conjugated materials. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 322-323, 119-128	4.7	4
50	Water-soluble fluorescent polymers that respond to singlet oxygen. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 2526-2535	2.5	9
49	Photolabile ROMP gels using ortho-nitrobenzyl functionalized crosslinkers. <i>Polymer Chemistry</i> , 2015 , 6, 4966-4971	4.9	22
48	Two-dimensional bricklayer arrangements of tolans using halogen bonding interactions. <i>Chemical Communications</i> , 2015 , 51, 8825-8	5.8	11
47	Two-Dimensional, Acene-Containing Conjugated Polymers That Show Ratiometric Fluorescent Response to Singlet Oxygen. <i>Macromolecules</i> , 2015 , 48, 6825-6831	5.5	27
46	Steric and Electronic Substituent Effects Influencing Regioselectivity of Tetracene Endoperoxidation. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11086-91	4.2	13
45	Ullmann coupling mediated assembly of an electrically driven altitudinal molecular rotor. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 31931-7	3.6	9

44	Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. <i>Macromolecules</i> , 2015 , 48, 959-966	5.5	45
43	Reversible photochemical tuning of net charge separation from contact electrification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 8754-61	9.5	11
42	Combining electronic and steric effects for highly stable unsymmetric pentacenes. <i>Chemistry - A European Journal</i> , 2014 , 20, 5880-4	4.8	18
41	Bandgap Engineering of Conjugated Materials with Nonconjugated Side Chains. <i>Macromolecules</i> , 2014 , 47, 2250-2256	5.5	14
40	Electronic effects of ring fusion and alkyne substitution on acene properties and reactivity. <i>Journal of Organic Chemistry</i> , 2014 , 79, 10081-93	4.2	37
39	Twisting and piezochromism of phenylene-ethynylenes with aromatic interactions between side chains and main chains. <i>Chemical Science</i> , 2014 , 5, 4184-4188	9.4	60
38	Wavelength-Selective Disruption and Triggered Release with Photolabile Polyelectrolyte Multilayers. <i>Chemistry of Materials</i> , 2014 , 26, 1450-1456	9.6	22
37	Furan-Containing Singlet Oxygen-Responsive Conjugated Polymers. <i>Macromolecules</i> , 2013 , 46, 756-762	5.5	16
36	Photoresponsive gels prepared by ring-opening metathesis polymerization. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1838-43	4.8	9
35	Photochemical disruption of polyelectrolyte multilayers. <i>Advanced Materials</i> , 2012 , 24, 1451-4	24	21
34	New Applications of Photolabile Nitrobenzyl Groups in Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2443-2449	2.6	29
33	CMOS Fluorometer for Oxygen Sensing. <i>IEEE Sensors Journal</i> , 2012 , 12, 2506-2507	4	
32	Acene-doped polymer films: singlet oxygen dosimetry and protein sensing. <i>Chemical Communications</i> , 2012 , 48, 9489-91	5.8	22
31	Structure, photophysics, and photooxidation of crowded diethynyltetracenes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6182		24
30	Photoinduced Aggregation of Polythiophenes. ACS Macro Letters, 2012, 1, 825-829	6.6	27
29	Robust error correction in infofuses. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 361-377	2.4	
28	Photoresponsive Polymers Containing Nitrobenzyl Esters via Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2011 , 44, 7956-7961	5.5	30
27	UV-induced fluorescence recovery and solubility modulation of photocaged conjugated oligomers. Journal of Materials Chemistry, 2011 , 21, 14041		27

26	New encoding schemes with infofuses. <i>Advanced Materials</i> , 2011 , 23, 4851-6	24	5
25	Acene-linked conjugated polymers with ratiometric fluorescent response to 102. <i>Chemical Communications</i> , 2011 , 47, 3445-7	5.8	29
24	Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17889-94	11.5	268
23	The Determination of the Location of Contact Electrification-Induced Discharge Events [] <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20885-20895	3.8	11
22	Parallel scanning-optical nanoscopy with optically confined probes. <i>Optics Express</i> , 2010 , 18, 16014-24	3.3	8
21	Controlling Contact Electrification with Photochromic Polymers. <i>Angewandte Chemie</i> , 2010 , 122, 8140-8	B 3.4 63	5
20	Long-duration transmission of information with infofuses. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4571-5	16.4	11
19	Controlling contact electrification with photochromic polymers. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7968-71	16.4	45
18	Infochemistry and infofuses for the chemical storage and transmission of coded information. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9147-50	11.5	38
17	Controlling the kinetics of contact electrification with patterned surfaces. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8746-7	16.4	32
16	Infochemistry: encoding information as optical pulses using droplets in a microfluidic device. Journal of the American Chemical Society, 2009 , 131, 12420-9	16.4	26
15	Phase separation of two-dimensional Coulombic crystals of mesoscale dipolar particles from mesoscale polarizable Bolvent Applied Physics Letters, 2009, 94, 044102	3.4	14
14	A non-chromatographic method for the purification of a bivalently active monoclonal IgG antibody from biological fluids. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9361-7	16.4	25
13	Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable "solvent". <i>Soft Matter</i> , 2009 , 5, 1188-1191	3.6	19
12	Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. <i>Analytical Chemistry</i> , 2008 , 80, 3699-707	7.8	1152
11	Patterns of electrostatic charge and discharge in contact electrification. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6654-6	16.4	50
10	Chemical sensors based on amplifying fluorescent conjugated polymers. <i>Chemical Reviews</i> , 2007 , 107, 1339-86	68.1	3646
9	Far-field generation of localized light fields using absorbance modulation. <i>Physical Review Letters</i> , 2007 , 98, 043905	7.4	30

8	Trace Hydrazine Detection with Fluorescent Conjugated Polymers: A Turn-On Sensory Mechanism. <i>Advanced Materials</i> , 2006 , 18, 1047-1050	24	107
7	Dark-field oxidative addition-based chemosensing: new bis-cyclometalated PtII complexes and phosphorescent detection of cyanogen halides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16641-8	16.4	116
6	Synthesis of a Novel Poly(iptycene) Ladder Polymer. <i>Macromolecules</i> , 2006 , 39, 3202-3209	5.5	44
5	Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II) poly(phenylene)s. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2829		68
4	Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). <i>Chemical Communications</i> , 2005 , 4572-4	5.8	172
3	Synthesis and Optical Properties of Simple Amine-Containing Conjugated Polymers. <i>Macromolecules</i> , 2005 , 38, 2716-2721	5.5	50
2	perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). <i>Journal of the American Chemical Society</i> , 2005 , 127, 17976-7	16.4	40
1	Quantum Amplified Isomerization: A New Chemically Amplified Imaging System in Solid Polymers. <i>ACS Symposium Series</i> , 2004 , 135-146	0.4	2