Samuel W Thomas

List of Publications by Citations

Source: https://exaly.com/author-pdf/2783527/samuel-w-thomas-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,882 82 27 79 h-index g-index citations papers 6.07 8.9 84 7,370 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
79	Chemical sensors based on amplifying fluorescent conjugated polymers. <i>Chemical Reviews</i> , 2007 , 107, 1339-86	68.1	3646
78	Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. <i>Analytical Chemistry</i> , 2008 , 80, 3699-707	7.8	1152
77	Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 17889-94	11.5	268
76	Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). <i>Chemical Communications</i> , 2005 , 4572-4	5.8	172
75	Dark-field oxidative addition-based chemosensing: new bis-cyclometalated PtII complexes and phosphorescent detection of cyanogen halides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16641-8	16.4	116
74	Trace Hydrazine Detection with Fluorescent Conjugated Polymers: A Turn-On Sensory Mechanism. <i>Advanced Materials</i> , 2006 , 18, 1047-1050	24	107
73	Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II) poly(phenylene)s. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2829		68
72	Twisting and piezochromism of phenylene-ethynylenes with aromatic interactions between side chains and main chains. <i>Chemical Science</i> , 2014 , 5, 4184-4188	9.4	60
71	Patterns of electrostatic charge and discharge in contact electrification. <i>Angewandte Chemie</i> - <i>International Edition</i> , 2008 , 47, 6654-6	16.4	50
70	Synthesis and Optical Properties of Simple Amine-Containing Conjugated Polymers. <i>Macromolecules</i> , 2005 , 38, 2716-2721	5.5	50
69	Thiophene-Based Conjugated Polymers with Photolabile Solubilizing Side Chains. <i>Macromolecules</i> , 2015 , 48, 959-966	5.5	45
68	Controlling contact electrification with photochromic polymers. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7968-71	16.4	45
67	Synthesis of a Novel Poly(iptycene) Ladder Polymer. <i>Macromolecules</i> , 2006 , 39, 3202-3209	5.5	44
66	perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). <i>Journal of the American Chemical Society</i> , 2005 , 127, 17976-7	16.4	40
65	Substituent Effects That Control Conjugated Oligomer Conformation through Non-covalent Interactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5164-5174	16.4	39
64	Infochemistry and infofuses for the chemical storage and transmission of coded information. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 9147-50	11.5	38
63	Electronic effects of ring fusion and alkyne substitution on acene properties and reactivity. <i>Journal of Organic Chemistry</i> , 2014 , 79, 10081-93	4.2	37

(2015-2018)

62	Tuning the Negative Photochromism of Water-Soluble Spiropyran Polymers. <i>Macromolecules</i> , 2018 , 51, 8027-8037	5.5	34	
61	Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. <i>ACS Applied Materials & Discourse Materials &</i>	9.5	33	
60	Controlling the kinetics of contact electrification with patterned surfaces. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8746-7	16.4	32	
59	Photoresponsive Polymers Containing Nitrobenzyl Esters via Ring-Opening Metathesis Polymerization. <i>Macromolecules</i> , 2011 , 44, 7956-7961	5.5	30	
58	Far-field generation of localized light fields using absorbance modulation. <i>Physical Review Letters</i> , 2007 , 98, 043905	7.4	30	
57	Stimuli-Responsive Free-Standing Layer-By-Layer Films. <i>Advanced Materials</i> , 2016 , 28, 715-21	24	29	
56	New Applications of Photolabile Nitrobenzyl Groups in Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 2443-2449	2.6	29	
55	Acene-linked conjugated polymers with ratiometric fluorescent response to 1O2. <i>Chemical Communications</i> , 2011 , 47, 3445-7	5.8	29	
54	Ratiometric Singlet Oxygen Detection in Water Using Acene-Doped Conjugated Polymer Nanoparticles. <i>ACS Applied Materials & Aces</i> , Interfaces, 2017 , 9, 15768-15775	9.5	28	
53	Reversible mechanofluorochromism of aniline-terminated phenylene ethynylenes. <i>Chemical Science</i> , 2018 , 9, 5415-5426	9.4	28	
52	Two-Dimensional, Acene-Containing Conjugated Polymers That Show Ratiometric Fluorescent Response to Singlet Oxygen. <i>Macromolecules</i> , 2015 , 48, 6825-6831	5.5	27	
51	Photoinduced Aggregation of Polythiophenes. ACS Macro Letters, 2012, 1, 825-829	6.6	27	
50	UV-induced fluorescence recovery and solubility modulation of photocaged conjugated oligomers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14041		27	
49	Infochemistry: encoding information as optical pulses using droplets in a microfluidic device. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12420-9	16.4	26	
48	A non-chromatographic method for the purification of a bivalently active monoclonal IgG antibody from biological fluids. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9361-7	16.4	25	
47	Structure, photophysics, and photooxidation of crowded diethynyltetracenes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6182		24	
46	Light-Controlled Selective Disruption, Multilevel Patterning, and Sequential Release with Polyelectrolyte Multilayer Films Incorporating Four Photocleavable Chromophores. <i>Chemistry of Materials</i> , 2017 , 29, 2951-2960	9.6	23	
45	Photolabile ROMP gels using ortho-nitrobenzyl functionalized crosslinkers. <i>Polymer Chemistry</i> , 2015 , 6, 4966-4971	4.9	22	

44	Wavelength-Selective Disruption and Triggered Release with Photolabile Polyelectrolyte Multilayers. <i>Chemistry of Materials</i> , 2014 , 26, 1450-1456	9.6	22
43	Acene-doped polymer films: singlet oxygen dosimetry and protein sensing. <i>Chemical Communications</i> , 2012 , 48, 9489-91	5.8	22
42	Photochemical disruption of polyelectrolyte multilayers. <i>Advanced Materials</i> , 2012 , 24, 1451-4	24	21
41	Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable "solvent". <i>Soft Matter</i> , 2009 , 5, 1188-1191	3.6	19
40	Directed Polymorphism and Mechanofluorochromism of Conjugated Materials through Weak Non-Covalent Control. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8316-8324	7.1	18
39	Combining electronic and steric effects for highly stable unsymmetric pentacenes. <i>Chemistry - A European Journal</i> , 2014 , 20, 5880-4	4.8	18
38	Triggered Release of Encapsulated Cargo from Photoresponsive Polyelectrolyte Nanocomplexes. <i>ACS Applied Materials & District Action (Control of the Control of the Control</i>	9.5	16
37	Furan-Containing Singlet Oxygen-Responsive Conjugated Polymers. <i>Macromolecules</i> , 2013 , 46, 756-762	5.5	16
36	Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays. <i>Nature Communications</i> , 2017 , 8, 16057	17.4	16
35	Bandgap Engineering of Conjugated Materials with Nonconjugated Side Chains. <i>Macromolecules</i> , 2014 , 47, 2250-2256	5.5	14
34	Phase separation of two-dimensional Coulombic crystals of mesoscale dipolar particles from mesoscale polarizable Bolvent Applied Physics Letters, 2009 , 94, 044102	3.4	14
33	Steric and Electronic Substituent Effects Influencing Regioselectivity of Tetracene Endoperoxidation. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11086-91	4.2	13
32	Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 2814-2820	9.5	13
31	Two-dimensional bricklayer arrangements of tolans using halogen bonding interactions. <i>Chemical Communications</i> , 2015 , 51, 8825-8	5.8	11
30	Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Organic and Biomolecular Chemistry, 2020 , 18, 9191-9209	3.9	11
29	Reversible photochemical tuning of net charge separation from contact electrification. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Discourt</i>	9.5	11
28	The Determination of the Location of Contact Electrification-Induced Discharge Events [] Journal of Physical Chemistry C, 2010 , 114, 20885-20895	3.8	11
27	Long-duration transmission of information with infofuses. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4571-5	16.4	11

(2021-2020)

26	Side Chain Regioisomers that Dictate Optical Properties and Mechanofluorochromism through Crystal Packing. <i>Chemistry of Materials</i> , 2020 , 32, 5785-5801	9.6	10
25	Ullmann coupling mediated assembly of an electrically driven altitudinal molecular rotor. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 31931-7	3.6	9
24	Photoresponsive gels prepared by ring-opening metathesis polymerization. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1838-43	4.8	9
23	Water-soluble fluorescent polymers that respond to singlet oxygen. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 2526-2535	2.5	9
22	Parallel scanning-optical nanoscopy with optically confined probes. <i>Optics Express</i> , 2010 , 18, 16014-24	3.3	8
21	Combining Top-Down and Bottom-Up with Photodegradable Layer-by-Layer Films. <i>Langmuir</i> , 2019 , 35, 13791-13804	4	7
20	Tuning the Key Properties of Singlet Oxygen-Responsive Acene-Doped Conjugated Polymer Nanoparticles. <i>ChemPhotoChem</i> , 2018 , 2, 632-639	3.3	7
19	UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. <i>Langmuir</i> , 2017 , 33, 10877-10885	4	6
18	Programmed twisting of phenylenellthynylene linkages from aromatic stacking interactions. Journal of Materials Chemistry C, 2019 , 7, 1198-1207	7.1	6
17	Spectroscopy and Reactivity of Dialkoxy Acenes. <i>Chemistry - A European Journal</i> , 2019 , 25, 10400-10407	4.8	6
16	Directly Photopatternable Polythiophene as Dual-Tone Photoresist. <i>Macromolecules</i> , 2017 , 50, 7258-72	63 .5	6
15	New encoding schemes with infofuses. <i>Advanced Materials</i> , 2011 , 23, 4851-6	24	5
14	Controlling Contact Electrification with Photochromic Polymers. <i>Angewandte Chemie</i> , 2010 , 122, 8140-8	B 3.4 63	5
13	Stimuli-responsive side chains for new function from conjugated materials. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 322-323, 119-128	4.7	4
12	Turning on solid-state phosphorescence of platinum acetylides with aromatic stacking. <i>Chemical Communications</i> , 2020 , 56, 6854-6857	5.8	4
11	Resistance to Unwanted Photo-Oxidation of Multi-Acene Molecules. <i>Journal of Organic Chemistry</i> , 2020 , 85, 12731-12739	4.2	4
10	Optimizing the self-assembly of conjugated polymers and small molecules through structurally programmed non-covalent control. <i>Journal of Polymer Science</i> , 2021 , 59, 1643-1663	2.4	4
9	Bridging the Void: Halogen Bonding and Aromatic Interactions to Program Luminescence and Electronic Properties of Econjugated Materials in the Solid State. <i>Chemistry of Materials</i> , 2021 , 33, 6640	-8661	4

8	Forcing Ladderenes into Plastic Semiconductors with Mechanochemistry. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15196-15198	16.4	3
7	Cycloadditions of Singlet Oxygen for Responsive Fluorescent Polymers. <i>Synlett</i> , 2016 , 27, 355-368	2.2	3
6	Small Changes With Big Consequences: Swapping Two Atoms In Side Chains Changes Phenylene-Ethynylene Packing And Fluorescence. <i>Chemistry - A European Journal</i> , 2018 , 24, 16987-1699	94 ^{.8}	3
5	Quantum Amplified Isomerization: A New Chemically Amplified Imaging System in Solid Polymers. <i>ACS Symposium Series</i> , 2004 , 135-146	0.4	2
4	Red-Emitting, Acene-Doped Conjugated Polymer Nanoparticles that Respond Ratiometrically to Photogenerated O. <i>ACS Applied Materials & District Respond</i> , 13, 13658-13665	9.5	1
3	BerfBrung von Ladderenen in plastische Halbleiter mithilfe der Mechanochemie. <i>Angewandte Chemie</i> , 2017 , 129, 15394-15396	3.6	
2	CMOS Fluorometer for Oxygen Sensing. <i>IEEE Sensors Journal</i> , 2012 , 12, 2506-2507	4	
1	Robust error correction in infofuses. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 361-377	2.4	