
Chin-Yi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. Journal of Microbiological Methods, 2003, 55, 475-479.	1.6	357
2	Quorum Sensing and Production of Autoinducer-2 in Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica Serovar Typhimurium in Foods. Applied and Environmental Microbiology, 2002, 68, 4666-4671.	3.1	86
3	The biofilm forming potential of bacterial species in the genus Campylobacterâ~†. Food Microbiology, 2009, 26, 44-51.	4.2	69
4	Sequence of the Escherichia coli O121 O-Antigen Gene Cluster and Detection of Enterohemorrhagic E. coli O121 by PCR Amplification of the wzx and wzy Genes. Journal of Clinical Microbiology, 2003, 41, 3379-3383.	3.9	63
5	Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157 : H7. Microbiology (United Kingdom), 2013, 159, 1586-1596.	1.8	57
6	Analysis of Al-2/LuxS–Dependent Transcription in <i>Campylobacter jejuni</i> Strain 81-176. Foodborne Pathogens and Disease, 2008, 5, 399-415.	1.8	54
7	DNA sequence of theEscherichia coliO103 O antigen gene cluster and detection of enterohemorrhagicE. coliO103 by PCR amplification of thewzxandwzygenes. Canadian Journal of Microbiology, 2005, 51, 515-522.	1.7	45
8	Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid, 2007, 57, 29-43.	1.4	45
9	Single-chain Fv antibody with specificity for Listeria monocytogenes. Journal of Immunological Methods, 2004, 289, 147-155.	1.4	44
10	Growth media and temperature effects on biofilm formation by serotype O157:H7 and non-O157 Shiga toxin-producing <i>Escherichia coli</i> . FEMS Microbiology Letters, 2014, 354, 133-141.	1.8	42
11	Quantitative analysis of viable, stressed and dead cells of Campylobacter jejuni strain 81-176. Food Microbiology, 2010, 27, 439-446.	4.2	37
12	Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase. Journal of Nanobiotechnology, 2010, 8, 34.	9.1	30
13	Phenotypic and Genotypic Characterization of Biofilm Forming Capabilities in Non-O157 Shiga Toxin-Producing Escherichia coli Strains. PLoS ONE, 2013, 8, e84863.	2.5	28
14	Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiology, 2015, 15, 83.	3.3	24
15	Prevalence of ColE1-Like Plasmids and Kanamycin Resistance Genes in <i>Salmonella enterica</i> Serovars. Applied and Environmental Microbiology, 2010, 76, 6707-6714.	3.1	20
16	Stx ₁ prophage excision in <i>Escherichia coli</i> strain PA20 confers strong curli and biofilm formation by restoring native <i>mlrA</i> . FEMS Microbiology Letters, 2016, 363, fnw123.	1.8	19
17	Evidence for a bimodal distribution of Escherichia coli doubling times below a threshold initial cell concentration. BMC Microbiology, 2010, 10, 207.	3.3	16
18	Multiple mechanisms responsible for strong Congo-red-binding variants of <i>Escherichia coli</i> O157:H7 strains. Pathogens and Disease, 2016, 74, ftv123.	2.0	16

CHIN-YI CHEN

#	Article	IF	CITATIONS
19	Blocking nonspecific adsorption of native food-borne microorganisms by immunomagnetic beads with ι-carrageenan. Carbohydrate Research, 2004, 339, 613-621.	2.3	15
20	Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: most probable composition of background Eubacteria. Analytical and Bioanalytical Chemistry, 2008, 391, 525-536.	3.7	14
21	Peroxide resistance in Escherichia coli serotype O157 : H7 biofilms is regulated by both RpoS-dependent and -independent mechanisms. Microbiology (United Kingdom), 2012, 158, 2225-2234.	1.8	13
22	The relationship between purely stochastic sampling error and the number of technical replicates used to estimate concentration at an extreme dilution. Analytical and Bioanalytical Chemistry, 2010, 398, 895-903.	3.7	12
23	Detection of acetyltransferase modification of kanamycin, an aminoglycoside antibiotic, in bacteria using ultrahighâ€performance liquid chromatography tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1549-1556.	1.5	12
24	The near-quantitative sampling of genomic DNA from various food-borne Eubacteria. BMC Microbiology, 2014, 14, 326.	3.3	11
25	Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: minimizing the errors of random sampling in extreme dilute systems. Analytical and Bioanalytical Chemistry, 2008, 391, 515-524.	3.7	10
26	A method for correcting standard-based real-time PCR DNA quantitation when the standard's polymerase reaction efficiency is significantly different from that of the unknown's. Analytical and Bioanalytical Chemistry, 2012, 402, 2713-2725.	3.7	10
27	Characterization of small ColE1-like plasmids conferring kanamycin resistance in Salmonella enterica subsp. enterica serovars Typhimurium and Newport. Plasmid, 2010, 63, 150-154.	1.4	9
28	Sequence analysis of a group of low molecular-weight plasmids carrying multiple IS903 elements flanking a kanamycin resistance aph gene in Salmonella enterica serovars. Plasmid, 2011, 65, 246-252.	1.4	8
29	Impacts of Clarification Techniques on Sample Constituents and Pathogen Retention. Foods, 2019, 8, 636.	4.3	7
30	Genome amplification and promoter mutation expand the range of csgD-dependent biofilm responses in an STEC population. Microbiology (United Kingdom), 2017, 163, 611-621.	1.8	6
31	Isolation and characterization of two novel groups of kanamycin-resistance ColE1-like plasmids in Salmonella enterica serotypes from food animals. PLoS ONE, 2018, 13, e0193435.	2.5	6
32	Serogroup-level resolution of the "Super-7―Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing. Analytical and Bioanalytical Chemistry, 2018, 410, 5439-5444.	3.7	5
33	Rapid detection and quantification of aminoglycoside phosphorylation products using directâ€infusion highâ€resolution and ultraâ€highâ€performance liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1822-1828.	1.5	5
34	Complete Genome Sequence of Campylobacter jejuni YH001 from Beef Liver, Which Contains a Novel Plasmid. Genome Announcements, 2015, 3, .	0.8	4
35	Whole-Genome Sequence of <i>Escherichia coli</i> Serotype O157:H7 Strain EDL932 (ATCC 43894). Genome Announcements, 2016, 4, .	0.8	4
36	Genomic Comparison of Conjugative Plasmids from Salmonella enterica and Escherichia coli Encoding Beta-Lactamases and Capable of Mobilizing Kanamycin Resistance Col-like Plasmids. Microorganisms, 2021, 9, 2205.	3.6	4

Chin-Yi Chen

#	Article	IF	Citations
37	A cloning vector for creation of Escherichia coli lacZ translational fusions and generation of linear template for chromosomal integration. Plasmid, 2012, 67, 259-263.	1.4	3
38	Complete Genome Sequences of Two Strains of the Meat Spoilage Bacterium Brochothrix thermosphacta Isolated from Ground Chicken. Genome Announcements, 2017, 5, .	0.8	3
39	The complex multicellular morphology of the food spoilage bacteria <i>Brochothrix thermosphacta</i> strains isolated from ground chicken. Canadian Journal of Microbiology, 2020, 66, 303-312.	1.7	3
40	Implementation of normalized retention time (iRT) for bottom-up proteomic analysis of the aminoglycoside phosphotransferase enzyme facilitating method distribution. Analytical and Bioanalytical Chemistry, 2019, 411, 4701-4708.	3.7	1
41	Bacterial cell recovery after hollow fiber microfiltration sample concentration: Most probable bacterial composition in frozen vegetables. LWT - Food Science and Technology, 2021, 140, 110647.	5.2	1
42	Deconvolution of the Error Associated with Random Sampling. Advances in Pure Mathematics, 2019, 09, 205-227.	0.3	1
43	Sequence analysis and plasmid mobilization of a 6.6-kb kanamycin resistance plasmid, pSNC3-Kan, from a Salmonella enterica serotype Newport isolate. PLoS ONE, 2022, 17, e0268502.	2.5	1