
Victor Bolobov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2782595/publications.pdf Version: 2024-02-01

VICTOR ROLOBOV

#	Article	IF	CITATIONS
1	Mechanism of Self-Ignition of Titanium Alloys in Oxygen. Combustion, Explosion and Shock Waves, 2002, 38, 639-645.	0.8	21
2	Conditions for Ignition of Iron and Carbon Steel in Oxygen. Combustion, Explosion and Shock Waves, 2001, 37, 292-296.	0.8	17
3	Possible Mechanism of Autoignition of Titanium Alloys in Oxygen. Combustion, Explosion and Shock Waves, 2003, 39, 677-680.	0.8	16
4	lgnition of compact stainless steel specimens in high pressure oxygen. Combustion, Explosion and Shock Waves, 1991, 27, 263-266.	0.8	7
5	Deflagration of titanium in an oxygen flow. Combustion, Explosion and Shock Waves, 1993, 29, 138-141.	0.8	7
6	Compact-specimen burning with fresh metal surface production. Combustion, Explosion and Shock Waves, 1992, 28, 457-459.	0.8	6
7	Mechanism of metal ignition due to fracture. Combustion, Explosion and Shock Waves, 2007, 43, 405-413.	0.8	6
8	About Increasing Wear Resistance of Rock-Breaking Tool to Abrasion by Using Mechanical and Thermo-Mechanical Treatment. International Review of Mechanical Engineering, 2017, 11, 301.	0.2	5
9	Effect of pressure on the ignition temperature of compact samples of nickel alloys in oxygen. Combustion, Explosion and Shock Waves, 1999, 35, 162-165.	0.8	4
10	Theory of ignition of metals at fracture. Combustion, Explosion and Shock Waves, 2012, 48, 689-693.	0.8	4
11	Effect of heat transfer conditions on the critical pressure of metal ignition in oxygen. Combustion, Explosion and Shock Waves, 2016, 52, 172-176.	0.8	4
12	REGULARITIES OF MATERIAL DESTRUCTION OF THE IMPACTOR IN REPEATED SINGLE PUNCH. Journal of Mining Institute, 0, 233, 525.	0.8	4
13	Study of factors enabling initiation and behavior of grooving corrosion. E3S Web of Conferences, 2019, 121, 03004.	0.5	3
14	Mechanism of metal ignition in an oxygen flow. Combustion, Explosion and Shock Waves, 1998, 34, 44-50.	0.8	2
15	Conditions for ignition of copper and copper alloys in oxygen. Combustion, Explosion and Shock Waves, 1998, 34, 159-162.	0.8	2
16	Numerical Analysis of Conditions for Ignition of Compact Metal Specimens and Foil in Oxygen. Combustion, Explosion and Shock Waves, 2001, 37, 655-663.	0.8	2
17	The investigation of the influence of thermomechanical treatment of the material of rotary cutter bit toolholders on its hardness. IOP Conference Series: Materials Science and Engineering, 2017, 177, 012062.	0.6	2
18	Possible ways to expand range of rock strength, destroyed by cutter bit. IOP Conference Series: Earth and Environmental Science, 2017, 87, 022003.	0.3	2

#	Article	IF	CITATIONS
19	Influence of deep cryogenic treatment on structure and wear resistance of materials of hydraulic breaker chisels. IOP Conference Series: Materials Science and Engineering, 2018, 327, 042016.	0.6	2
20	High temperature oxidation and ignition of some metallic materials in fluorine. Combustion, Explosion and Shock Waves, 1998, 34, 397-404.	0.8	1
21	About heating of fracture fragments of structures. Metal Science and Heat Treatment, 2010, 52, 83-85.	0.6	Ο