Xiaohu You

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2782517/xiaohu-you-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

309 5,710 32 67 g-index

328 7,782 5 6.32 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
309	Structured OMP for IRS-aided mmWave Channel Estimation by Exploiting Angular Spread. <i>IEEE Transactions on Vehicular Technology</i> , 2022 , 1-1	6.8	
308	Effective Throughput Maximization of NOMA with Practical Modulations. <i>IEEE Journal on Selected Areas in Communications</i> , 2022 , 1-1	14.2	1
307	Real-time demonstration of 103.125-Gbps fiber-THz-fiber 2 ½ MIMO transparent transmission at 360-430 GHz based on photonics <i>Optics Letters</i> , 2022 , 47, 1214-1217	3	5
306	Fast Iterative Soft-Output List Decoding of Polar Codes. <i>IEEE Transactions on Signal Processing</i> , 2022 , 70, 1361-1376	4.8	1
305	Load-Aware Dynamic Mode Selection for Network-Assisted Full-Duplex Cell-Free Large-Scale Distributed MIMO Systems. <i>IEEE Access</i> , 2022 , 10, 22301-22310	3.5	1
304	Hybrid Beamforming for Millimeter Wave MIMO Integrated Sensing and Communications. <i>IEEE Communications Letters</i> , 2022 , 1-1	3.8	2
303	Efficient MMSE-PIC Detection for Polar-Coded System Using Tree-Structured Gray Codes. <i>IEEE Wireless Communications Letters</i> , 2022 , 1-1	5.9	
302	A 1.9-dB NF K-Band Temperature-Healing Phased-Array Receiver Employing Hybrid Packaged 65-nm CMOS Beamformer and 0.1-fh GaAs LNAs. <i>IEEE Microwave and Wireless Components Letters</i> , 2022 , 1-4	2.6	1
301	Joint optimization of spectral efficiency and energy efficiency with low-precision ADCs in cell-free massive MIMO systems. <i>Science China Information Sciences</i> , 2022 , 65, 1	3.4	
300	Multiple Angles of Arrival Estimation Using Broadband Signals and a Nonuniform Planar Array. <i>IEEE Transactions on Communications</i> , 2022 , 1-1	6.9	
299	A 24-29.5-GHz Highly Linear Phased-Array Transceiver Front-End in 65-nm CMOS Supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G New Radio. <i>IEEE Journal of Solid-State Circuits</i> , 2022 , 1-1	5.5	3
298	Conformal IRS-Empowered MIMO-OFDM: Channel Estimation and Environment Mapping. <i>IEEE Transactions on Communications</i> , 2022 , 1-1	6.9	
297	Pervasive Wireless Channel Modeling Theory and Applications to 6G GBSMs for All Frequency Bands and All Scenarios. <i>IEEE Transactions on Vehicular Technology</i> , 2022 , 1-1	6.8	5
296	Analysis and Design of a CMOS LNA With Transformer-Based Integrated Notch Filter for Ku-Band Satellite Communications. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 1-1	4.1	2
295	Fingerprint-Based Covariance Matrix Estimation for Cell-Free Distributed Massive MIMO Systems. <i>IEEE Wireless Communications Letters</i> , 2021 , 1-1	5.9	1
294	Intelligent Optimization of Base Station Array Orientations via Scenario-Specific Modeling. <i>IEEE Transactions on Communications</i> , 2021 , 1-1	6.9	О
293	Dynamic SCL Decoder with Path-Flipping for 5G Polar Codes. <i>IEEE Wireless Communications Letters</i> , 2021 , 1-1	5.9	1

(2021-2021)

292	An Efficient Stochastic Convolution Architecture Based on Fast FIR Algorithm. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 1-1	3.5	
291	Joint Channel Estimation and Data Detection in Cell-Free Massive MU-MIMO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
290	. IEEE Access, 2021 , 9, 158426-158439	3.5	1
289	QoS Optimization for Mobile Ad Hoc Cloud: A Multi-Agent Independent Learning Approach. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	1
288	Federated Learning Based Content Popularity Prediction in Fog Radio Access Networks. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
287	Predictive Modeling of Millimeter-Wave Vegetation Scattering Effect Using Hybrid Physics-Based and Data-Driven Approach. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	4.9	
286	Low-Complexity Transmission Technologies for D-MIMO 2021 , 139-165		
285	Proof of Concept and Validation: Implementation Based on a Cloud Architecture 2021 , 191-220		
284	Analysis of the Channel Capacity of Distributed MIMO 2021 , 15-44		
283	Massive Distributed MIMO and Cell-Free Network-Assisted Full Duplex 2021 , 167-189		
282	Transmit Power Allocation and Energy Efficiency Optimization of Distributed MIMO 2021, 89-107		
281	Cell Edge Effect and Its Elimination with a Cell-Free System 2021 , 71-87		
280	Fundamentals of Distributed MIMO and Cell-Free Mobile Communications 2021, 1-13		
279	Intelligent Interactive Beam Training for Millimeter Wave Communications. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 2034-2048	9.6	10
278	Blockchain-enabled wireless communications: a new paradigm towards 6G. <i>National Science Review</i> , 2021 , 8, nwab069	10.8	10
277	. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021 , 68, 1398-1408	3.9	8
276	A General 3D Non-Stationary Wireless Channel Model for 5G and Beyond. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 3211-3224	9.6	28
275	Broadband Extended Array Response-Based Subspace Multiparameter Estimation Method for Multipolarized Wireless Channel Measurements. <i>IEEE Transactions on Communications</i> , 2021 , 69, 3298-	3312	2

274	Efficient Fast-SCAN Flip Decoder for Polar Codes 2021 ,		1
273	Cooperative Edge Caching via Federated Deep Reinforcement Learning in Fog-RANs 2021,		5
272	Tensor-Based Algebraic Channel Estimation for Hybrid IRS-Assisted MIMO-OFDM. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 3770-3784	9.6	14
271	True-data testbed for 5G/B5G intelligent network. <i>Intelligent and Converged Networks</i> , 2021 , 2, 133-14	94	8
270	. IEEE Transactions on Wireless Communications, 2021 , 20, 3815-3830	9.6	3
269	Hardware Implementation for Bipartite Belief Propagation Polar Decoding with Bit Flipping. Journal of Signal Processing Systems, 2021, 93, 1149	1.4	
268	Pilot-Assisted SIMO-NOMA Signal Detection With Learnable Successive Interference Cancellation. <i>IEEE Communications Letters</i> , 2021 , 25, 2385-2389	3.8	4
267	Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	264
266	A W-Band 2 I ² Rectenna Array With On-Chip CMOS Switching Rectifier and On-PCB Tapered Slot Antenna for Wireless Power Transfer. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 69, 969-979	4.1	3
265	Hardware Implementation for Belief Propagation Flip Decoding of Polar Codes. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 1330-1341	3.9	4
264	Network-Assisted Full-Duplex Distributed Massive MIMO Systems With Beamforming Training Based CSI Estimation. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 2190-2204	9.6	5
263	. IEEE Transactions on Wireless Communications, 2021 , 20, 69-82	9.6	9
262	Approximate Expectation Propagation Massive MIMO Detector With Weighted Neumann-Series. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 662-666	3.5	6
261	Matching Theory Based Physical Layer Secure Transmission Strategy for Cognitive Radio Networks. <i>IEEE Access</i> , 2021 , 9, 46201-46209	3.5	2
260	Improving Approximate Expectation Propagation Massive MIMO Detector With Deep Learning. <i>IEEE Wireless Communications Letters</i> , 2021 , 1-1	5.9	2
259	A Ku-Band CMOS Power Amplifier With Series-Shunt LC Notch Filter for Satellite Communications. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 1-12	3.9	8
258	Joint User Selection and Transceiver Design for Cell-Free with Network-Assisted Full Duplexing. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	3
257	Impacts of Asynchronous Reception on Cell-Free Distributed Massive MIMO Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	1

(2020-2021)

256	An Efficient Detector for Massive MIMO Based on Improved Matrix Partition. <i>IEEE Transactions on Signal Processing</i> , 2021 , 69, 2971-2986	4.8	2
255	Joint Transceiver Design for Network-Assisted Full-Duplex Systems With SWIPT. <i>IEEE Systems Journal</i> , 2021 , 1-11	4.3	4
254	Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	2
253	Cooperative Reflection Design with Timing Offsets in Distributed Multi-RIS Communications. <i>IEEE Wireless Communications Letters</i> , 2021 , 1-1	5.9	2
252	. IEEE Access, 2021 , 9, 122107-122112	3.5	1
251	Brain Storm Optimization-Based Edge Caching in Fog Radio Access Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 1807-1820	6.8	5
250	A Lightweight Deep Network for Efficient CSI Feedback in Massive MIMO Systems. <i>IEEE Wireless Communications Letters</i> , 2021 , 10, 1840-1844	5.9	8
249	Efficient Row-Layered Decoder for Sparse Code Multiple Access. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 3495-3507	3.9	1
248	Multidimensional Constellation Design for Spatial Modulated SCMA Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 70, 8795-8810	6.8	1
247	A Novel Flip-List-Enabled Belief Propagation Decoder for Polar Codes. <i>Electronics (Switzerland)</i> , 2021 , 10, 2302	2.6	O
246	Millimeter-Wave Integrated Phased Arrays. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 3977-3990	3.9	11
245	Corrections to Millimeter-Wave Integrated Phased Arrays[early access, Jul 12, 21 doi: 10.1109/TCSI.2021.3093093]. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 4413-	4413	
244	Optimization of Duplex Mode Selection for Network-Assisted Full-Duplex Cell-Free Massive MIMO Systems. <i>IEEE Communications Letters</i> , 2021 , 1-1	3.8	3
243	Deep Learning-Based Channel Estimation for Massive-MIMO With Mixed-Resolution ADCs and Low-Resolution Information Utilization. <i>IEEE Access</i> , 2021 , 9, 54938-54950	3.5	5
242	Low-Complexity Construction of Polar Codes Based on Genetic Algorithm. <i>IEEE Communications Letters</i> , 2021 , 1-1	3.8	2
241	A Novel 3D Non-Stationary GBSM for 6G THz Ultra Massive MIMO Wireless Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2021 , 1-1	6.8	8
240	Autogeneration of Pipelined Belief Propagation Polar Decoders. <i>IEEE Transactions on Very Large Scale Integration (VLSI) Systems</i> , 2020 , 28, 1703-1716	2.6	1
239	Beam Alignment and Tracking for Millimeter Wave Communications via Bandit Learning. <i>IEEE Transactions on Communications</i> , 2020 , 68, 5519-5533	6.9	19

238	Efficient Sphere Polar Decoding via Synchronous Determination. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 6777-6781	6.8	3
237	Efficient Belief Propagation Polar Decoder With Loop Simplification Based Factor Graphs. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 5657-5660	6.8	7
236	Bipartite Belief Propagation Polar Decoding With Bit-Flipping 2020,		1
235	A DC-50 GHz CMOS Switched-Type Attenuator With Capacitive Compensation Technique. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2020 , 67, 3389-3399	3.9	11
234	On Uplink Performance of Multiuser Massive MIMO Relay Network With Limited RF Chains. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 8670-8683	6.8	3
233	Transmission Scheme and Performance Analysis of Multi-Cell Decoupled Heterogeneous Networks. <i>IEEE Transactions on Communications</i> , 2020 , 68, 4423-4436	6.9	5
232	A 20-GHz 1.9-mW LNA Using gm-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications. <i>IEEE Journal of Solid-State Circuits</i> , 2020 , 55, 2714-2723	5.5	20
231	A Flexible and High Parallel Permutation Network for 5G LDPC Decoders. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2020 , 67, 3018-3022	3.5	7
230	Deep Learning-Aided Belief Propagation Decoder for Polar Codes. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2020 , 10, 189-203	5.2	8
229	Stochastic Belief Propagation Polar Decoding With Efficient Re-Randomization. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 6771-6776	6.8	5
228	Efficient Pre-Conditioned Descent Search Detector for Massive MU-MIMO. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 4663-4676	6.8	2
227	. IEEE Transactions on Vehicular Technology, 2020 , 69, 5219-5231	6.8	15
226	Low-Latency Segmented List-Pruning Software Polar List Decoder. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 3575-3589	6.8	7
225	A Linear-Complexity Channel-Independent Code Construction Method for List Sphere Polar Decoder. <i>Journal of Signal Processing Systems</i> , 2020 , 92, 763-774	1.4	3
224	Transceiver Design for Large-scale DAS with Network Assisted Full Duplex 2020,		2
223	Measurement-Based 5G Millimeter-Wave Propagation Characterization in Vegetated Suburban Macrocell Environments. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 5556-5567	4.9	24
222	Reconfigurable and Low-Complexity Accelerator for Convolutional and Generative Networks Over Finite Fields. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2020 , 39, 4894-4907	2.5	5
221	Efficient Sparse Code Multiple Access Decoder Based on Deterministic Message Passing Algorithm. IEEE Transactions on Vehicular Technology, 2020, 69, 3562-3574	6.8	9

(2020-2020)

220	Polar Compiler: Auto-Generator of Hardware Architectures for Polar Encoders. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2020 , 67, 2091-2102	3.9	2
219	. IEEE Signal Processing Letters, 2020 , 27, 271-275	3.2	3
218	Efficient Successive Over Relaxation Detectors for Massive MIMO. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2020 , 67, 2128-2139	3.9	11
217	Mathematical Modeling Analysis of Strong Physical Unclonable Functions. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2020 , 39, 4426-4438	2.5	8
216	Tensor-Based Channel Estimation for Millimeter Wave MIMO-OFDM With Dual-Wideband Effects. <i>IEEE Transactions on Communications</i> , 2020 , 68, 4218-4232	6.9	20
215	Enhanced Belief Propagation Decoder for 5G Polar Codes With Bit-Flipping. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2020 , 67, 901-905	3.5	14
214	. IEEE Transactions on Microwave Theory and Techniques, 2020 , 68, 2876-2890	4.1	10
213	Uplink Interference Analysis of F-OFDM Systems Under Non-Ideal Synchronization. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 15500-15517	6.8	1
212	Interleaved Training for Intelligent Surface-Assisted Wireless Communications. <i>IEEE Signal Processing Letters</i> , 2020 , 27, 1774-1778	3.2	1
211	Quantum version of MMSE-based massive MIMO uplink detection. <i>Quantum Information Processing</i> , 2020 , 19, 1	1.6	4
211		1.6	2
	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> ,		
210	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> , 2020 , 92, 517-528 A Mean Field Game-Based Distributed Edge Caching in Fog Radio Access Networks. <i>IEEE</i>	1.4	2
210	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> , 2020 , 92, 517-528 A Mean Field Game-Based Distributed Edge Caching in Fog Radio Access Networks. <i>IEEE Transactions on Communications</i> , 2020 , 68, 1567-1580 An Efficient Software Stack Sphere Decoder for Polar Codes. <i>IEEE Transactions on Vehicular</i>	6.9	20
210209208	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> , 2020, 92, 517-528 A Mean Field Game-Based Distributed Edge Caching in Fog Radio Access Networks. <i>IEEE Transactions on Communications</i> , 2020, 68, 1567-1580 An Efficient Software Stack Sphere Decoder for Polar Codes. <i>IEEE Transactions on Vehicular Technology</i> , 2020, 69, 1257-1266 Secrecy Energy Efficiency Optimization for Multi-User Distributed Massive MIMO Systems. <i>IEEE</i>	1.46.96.8	2 20 5
210209208207	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> , 2020, 92, 517-528 A Mean Field Game-Based Distributed Edge Caching in Fog Radio Access Networks. <i>IEEE Transactions on Communications</i> , 2020, 68, 1567-1580 An Efficient Software Stack Sphere Decoder for Polar Codes. <i>IEEE Transactions on Vehicular Technology</i> , 2020, 69, 1257-1266 Secrecy Energy Efficiency Optimization for Multi-User Distributed Massive MIMO Systems. <i>IEEE Transactions on Communications</i> , 2020, 68, 915-929 Performance of Network-Assisted Full-Duplex for Cell-Free Massive MIMO. <i>IEEE Transactions on</i>	6.9 6.8	2 20 5
210209208207206	An Efficient Software List Sphere Decoder for Polar Codes. <i>Journal of Signal Processing Systems</i> , 2020, 92, 517-528 A Mean Field Game-Based Distributed Edge Caching in Fog Radio Access Networks. <i>IEEE Transactions on Communications</i> , 2020, 68, 1567-1580 An Efficient Software Stack Sphere Decoder for Polar Codes. <i>IEEE Transactions on Vehicular Technology</i> , 2020, 69, 1257-1266 Secrecy Energy Efficiency Optimization for Multi-User Distributed Massive MIMO Systems. <i>IEEE Transactions on Communications</i> , 2020, 68, 915-929 Performance of Network-Assisted Full-Duplex for Cell-Free Massive MIMO. <i>IEEE Transactions on Communications</i> , 2020, 68, 1464-1478 Efficient Expectation Propagation Massive MIMO Detector With Neumann-Series Approximation.	1.46.96.86.96.9	2 20 5 6 41

202	Joint Long-Term Energy Efficiency Optimization in C-RAN With Hybrid Energy Supply. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 11128-11138	6.8	6
201	. IEEE Transactions on Wireless Communications, 2020, 19, 8442-8454	9.6	10
200	Improved Belief Propagation Polar Decoders With Bit-Flipping Algorithms. <i>IEEE Transactions on Communications</i> , 2020 , 68, 6699-6713	6.9	7
199	Joint Sparse Beamforming and Power Control for a Large-Scale DAS With Network-Assisted Full Duplex. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 7569-7582	6.8	8
198	Hybrid beamforming design for mmWave OFDM distributed antenna systems. <i>Science China Information Sciences</i> , 2020 , 63, 1	3.4	3
197	Distributed Edge Caching with Content Recommendation in Fog-RANs Via Deep Reinforcement Learning 2020 ,		5
196	Content Popularity Prediction in Fog Radio Access Networks: A Federated Learning Based Approach 2020 ,		9
195	User Clustering Scheme for Downlink Hybrid NOMA Systems Based on Genetic Algorithm. <i>IEEE Access</i> , 2020 , 8, 129461-129468	3.5	6
194	Implementation of a Cloud-Based Cell-Free Distributed Massive MIMO System. <i>IEEE Communications Magazine</i> , 2020 , 58, 61-67	9.1	10
193	A Ka-Band CMOS 4-Beam Phased-Array Receiver With Symmetrical Beam-Distribution Network. <i>IEEE Solid-State Circuits Letters</i> , 2020 , 3, 410-413	2	7
192	Machine-Type Communication for Maritime Internet of Things: A Design. <i>IEEE Communications Surveys and Tutorials</i> , 2020 , 22, 2550-2585	37.1	20
191	Channel Estimation and Hybrid Precoding for Distributed Phased Arrays Based MIMO Wireless Communications. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 12921-12937	6.8	7
190	Joint Redundant MDS Codes and Cluster Cooperation Based Coded Caching in Fog Radio Access Networks 2020 ,		1
189	. IEEE Vehicular Technology Magazine, 2020 , 15, 22-32	9.9	83
188	Enhanced Linear Iterative Detector for Massive Multiuser MIMO Uplink. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2020 , 67, 540-552	3.9	7
187	Edge Caching Resource Allocation in Fog Radio Access Networks: An Incentive Mechanism Based Approach 2019 ,		2
186	Belief Propagation Bit-Flip Decoder for Polar Codes. <i>IEEE Access</i> , 2019 , 7, 10937-10946	3.5	23
185	Sparse Beamforming for an Ultradensely Distributed Antenna System With Interlaced Clustering. <i>IEEE Access</i> , 2019 , 7, 15069-15085	3.5	1

(2019-2019)

184	Large System Performance and Distributed Scheme of Downlink Beamforming in F-RANs With Distributed Antennas. <i>IEEE Access</i> , 2019 , 7, 33441-33453	3.5	6	
183	Joint Detection and Decoding of Polar-Coded OFDM-IDMA Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2019 , 66, 4005-4017	3.9	2	
182	Delay-constrained sleeping mechanism for energy saving in cache-aided ultra-dense network. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	8	
181	On the Low-Complexity, Hardware-Friendly Tridiagonal Matrix Inversion for Correlated Massive MIMO Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 6272-6285	6.8	17	
180	An Improved Software List Sphere Polar Decoder With Synchronous Determination. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 5236-5245	6.8	10	
179	. IEEE Transactions on Wireless Communications, 2019 , 18, 3236-3250	9.6	13	
178	Subarray-Based Simultaneous Beam Training for Multiuser mmWave Massive MIMO Systems. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 976-979	5.9	9	
177	Transceiver Design With UCD-Based Hybrid Beamforming for Millimeter Wave Massive MIMO. <i>IEEE Transactions on Communications</i> , 2019 , 67, 4047-4061	6.9	6	
176	Deep Learning-Based Pilot Design for Multi-User Distributed Massive MIMO Systems. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 1016-1019	5.9	32	
175	Energy Efficiency Optimization of Distributed Massive MIMO Systems Under Ergodic QoS and Per-RAU Power Constraints. <i>IEEE Access</i> , 2019 , 7, 5001-5013	3.5	5	
174	. IEEE Transactions on Mobile Computing, 2019 , 18, 885-895	4.6	6	
173	Power Control via Stackelberg Game for Small-Cell Networks. <i>Wireless Communications and Mobile Computing</i> , 2019 , 2019, 1-10	1.9	3	
172	Satellite Machine-Type Communication for Maritime Internet of Things: An Interference Perspective. <i>IEEE Access</i> , 2019 , 7, 76404-76415	3.5	18	
171	Joint Processing of Pilot and Data for Massive MIMO Systems in Ricean Fading Channels. <i>IEEE Access</i> , 2019 , 7, 83615-83627	3.5	3	
170	OFDM-Clipped Signal Recovery and Learning Using Gaussian Mixture GTurbo Approach. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 1533-1536	5.9	3	
169	Efficient Successive Cancellation Stack Decoder for Polar Codes. <i>IEEE Transactions on Very Large Scale Integration (VLSI) Systems</i> , 2019 , 27, 2608-2619	2.6	6	
168	A Low-Complexity Massive MIMO Detection Based on Approximate Expectation Propagation. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 7260-7272	6.8	24	
167	Distributed Edge Caching via Reinforcement Learning in Fog Radio Access Networks 2019 ,		9	

166	Multiband Cooperation for 5G HetNets: A Promising Network Paradigm. <i>IEEE Vehicular Technology Magazine</i> , 2019 , 14, 85-93	9.9	63
165	Energy efficient joint energy cooperation and power allocation in multiuser distributed antenna systems with hybrid energy supply. <i>IET Communications</i> , 2019 , 13, 153-161	1.3	5
164	Intelligent Beam Training for Millimeter-Wave Communications via Deep Reinforcement Learning 2019 ,		6
163	ADMM Enabled Hybrid Precoding in Wideband Distributed Phased Arrays Based MIMO Systems 2019 ,		3
162	Content Popularity Prediction via Deep Learning in Cache-Enabled Fog Radio Access Networks 2019 ,		5
161	Cooperative Edge Caching in Fog Radio Access Networks: A Pigeon Inspired Optimization Approach 2019 ,		5
160	Analysis of Delay and Energy Efficiency in Fog Radio Access Networks with Hybrid Caching 2019,		2
159	Spectral Efficiency Analysis of Network-Assisted Full Duplexing for Large-Scale Distributed Antenna Systems 2019 ,		1
158	Cooperative caching in fog radio access networks: a graph-based approach. <i>IET Communications</i> , 2019 , 13, 3519-3528	1.3	9
157	Wideband mmWave Channel Estimation for Hybrid Massive MIMO With Low-Precision ADCs. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 285-288	5.9	18
156	User Preference Learning-Based Edge Caching for Fog Radio Access Network. <i>IEEE Transactions on Communications</i> , 2019 , 67, 1268-1283	6.9	85
155	Optical Mobile Communications: Principles, Implementation, and Performance Analysis. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 471-482	6.8	15
154	Efficient Channel Estimator With Angle-Division Multiple Access. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2019 , 66, 708-718	3.9	4
153	Efficient Soft-Output Gauss-Seidel Data Detector for Massive MIMO Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2019 , 1-12	3.9	17
152	Al for 5G: research directions and paradigms. Science China Information Sciences, 2019, 62, 1	3.4	73
151	Performance Analysis of Multi-Cell Millimeter-Wave Massive MIMO Networks With Low-Precision ADCs. <i>IEEE Transactions on Communications</i> , 2019 , 67, 302-317	6.9	14
150	Optimal Multiuser Loading in Quantized Massive MIMO Under Spatially Correlated Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 1459-1471	6.8	5
149	Interference-Aware Wireless Networks for Home Monitoring and Performance Evaluation. <i>IEEE Transactions on Automation Science and Engineering</i> , 2018 , 15, 1286-1297	4.9	7

(2018-2018)

148	A General 3-D Non-Stationary 5G Wireless Channel Model. <i>IEEE Transactions on Communications</i> , 2018 , 66, 3065-3078	6.9	156
147	Utility-Energy Efficiency Oriented User Association With Power Control in Heterogeneous Networks. <i>IEEE Wireless Communications Letters</i> , 2018 , 7, 526-529	5.9	21
146	Performance Analysis of Multiuser Massive MIMO With Spatially Correlated Channels Using Low-Precision ADC. <i>IEEE Communications Letters</i> , 2018 , 22, 205-208	3.8	23
145	Adaptive Preconditioned Iterative Linear Detection and Architecture for Massive MU-MIMO Uplink. <i>Journal of Signal Processing Systems</i> , 2018 , 90, 1453-1467	1.4	6
144	mmWave communications for 5G: implementation challenges and advances. <i>Science China Information Sciences</i> , 2018 , 61, 1	3.4	32
143	Signal Processing for MIMO-NOMA: Present and Future Challenges. <i>IEEE Wireless Communications</i> , 2018 , 25, 32-38	13.4	58
142	Reconfigurable Decoder for LDPC and Polar Codes 2018 ,		10
141	Benefits of Beamforming Training Scheme in Distributed Large-Scale MIMO Systems. <i>IEEE Access</i> , 2018 , 6, 7432-7444	3.5	9
140	Graph-based Cooperative Caching in Fog-RAN 2018 ,		11
139	Learning Oriented Cross-Entropy Approach to User Association in Load-Balanced HetNet. <i>IEEE Wireless Communications Letters</i> , 2018 , 7, 1014-1017	5.9	14
138	Spectral Efficiency Analysis for Bidirectional Dynamic Network With Massive MIMO Under Imperfect CSI. <i>IEEE Access</i> , 2018 , 6, 43660-43671	3.5	5
137	A low-complexity practical energy saving algorithm for real dense wireless scenario 2018,		1
136	A Fully Integrated 300-MHz Channel Bandwidth 256 QAM Transceiver With Self-Interference Suppression in Closely Spaced Channels at 6.5-GHz Band. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 1-12	4.1	2
135	Downlink Spectral Efficiency of Distributed Massive MIMO Systems With Linear Beamforming Under Pilot Contamination. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 1130-1145	6.8	42
134	Low-Complexity Belief Propagation Detection for Correlated Large-Scale MIMO Systems. <i>Journal of Signal Processing Systems</i> , 2018 , 90, 585-599	1.4	17
133	A LARGE-SCALE EXTENSION OF SPARSE-CODE MULTIPLE-ACCESS SYSTEM 2018 ,		1
132	Performance Analysis and Caching Design in Fog Radio Access Networks 2018,		10
131	Downlink Spectral Efficiency Analysis in Distributed Massive MIMO with Phase Noise. <i>Electronics</i> (Switzerland), 2018 , 7, 317	2.6	1

130	Expectation Propagation Detection with Neumann-Series Approximation for Massive MIMO 2018,		11
129	A Low-Complexity Massive MIMO Detection Algorithm Based on Matrix Partition 2018,		2
128	LOW-COMPLEXITY MESSAGE PASSING MIMO DETECTION ALGORITHM WITH DEEP NEURAL NETWORK 2018 ,		7
127	Efficient Folded SC Polar Line Decoder 2018 ,		1
126	Synthesizing LDPC Belief Propagation Decoding with Molecular Reactions 2018,		1
125	Adaptive Damped Jacobi Detector and Architecture for Massive MIMO Uplink 2018,		1
124	Spectral and Energy Efficiency of Distributed Massive MIMO with Low-Resolution ADC. <i>Electronics</i> (Switzerland), 2018 , 7, 391	2.6	1
123	Massive MIMO Detection based on Barzilai-Borwein Algorithm 2018,		2
122	Successive Cancellation List Bit-flip Decoder for Polar Codes 2018,		10
121	Downlink Transmission Strategies in Power-Splitting SWIPT Distributed MISO Systems. <i>IEEE Access</i> , 2018 , 6, 52997-53005	3.5	4
120	Power- and Rate-Adaptation Improves the Effective Capacity of C-RAN for Nakagami- \$m\$ Fading Channels. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 10841-10855	6.8	10
119	Envelope Detection for an ADC-Relaxed Double-Sideband Low-IF CW Doppler Radar. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 5833-5841	4.1	9
118	Envelope detection for a double-sideband Low IF CW radar 2018,		4
117	2018,		24
116	Energy Efficiency Optimization for MIMO Distributed Antenna Systems With Pilot Contamination. <i>IEEE Access</i> , 2018 , 6, 24157-24170	3.5	8
115	A Data-Aided Channel Estimation Scheme for Decoupled Systems in Heterogeneous Networks. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 4987-5000	9.6	6
114	LTE on License-Exempt Spectrum. <i>IEEE Communications Surveys and Tutorials</i> , 2018 , 20, 647-673	37.1	33
113	Distributed Optimization of Hierarchical Small Cell Networks: A GNEP Framework. <i>IEEE Journal on Selected Areas in Communications</i> , 2017 , 35, 249-264	14.2	31

(2017-2017)

112	Resource allocation in OFDMA heterogeneous networks for maximizing weighted sum energy efficiency. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	6
111	Energy-Efficient Noncooperative Power Control in Small-Cell Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 7540-7547	6.8	12
110	Compressed sensing-based time-domain channel estimator for full-duplex OFDM systems with IQ-imbalances. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	12
109	Uplink Spectral Efficiency Analysis of Distributed Massive MIMO With Channel Impairments. <i>IEEE Access</i> , 2017 , 1-1	3.5	15
108	Narrowband Wireless Access for Low-Power Massive Internet of Things: A Bandwidth Perspective. <i>IEEE Wireless Communications</i> , 2017 , 24, 138-145	13.4	113
107	Bidirectional dynamic networks with massive MIMO: performance analysis. <i>IET Communications</i> , 2017 , 11, 468-476	1.3	11
106	Antenna Clustering for Bidirectional Dynamic Network With Large-Scale Distributed Antenna Systems. <i>IEEE Access</i> , 2017 , 5, 4037-4047	3.5	18
105	Efficient fast convolution architectures for convolutional neural network 2017,		8
104	Belief propagation detection based on max-sum algorithm for massive MIMO systems 2017,		3
103	Energy-Spectral-Efficiency Tradeoff in Interference-Limited Wireless Networks. <i>Wireless Personal Communications</i> , 2017 , 96, 5515-5532	1.9	4
102	On Optimal Power Allocation for Downlink Non-Orthogonal Multiple Access Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2017 , 1-1	14.2	172
101	Efficient Low-Resolution ADC Relaying for Multiuser Massive MIMO System. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 11039-11056	6.8	31
100	Effect of Pilot Contamination Over Diversity Gain in Multi-cell MU-MIMO Systems. <i>Wireless Personal Communications</i> , 2017 , 95, 4807-4822	1.9	O
99	Joint detection and decoding of polar-coded SCMA systems 2017 ,		14
98	Convexity of Weighted Sum Rate Maximization in NOMA Systems. <i>IEEE Signal Processing Letters</i> , 2017 , 24, 1323-1327	3.2	39
97	The VLSI architecture for channel estimation based on ADMA 2017,		1
96	A Novel Caching Policy with Content Popularity Prediction and User Preference Learning in Fog-RAN 2017 ,		17
95	Joint Detection and Decoding for Polar Coded MIMO Systems 2017 ,		7

94	. China Communications, 2017 , 14, 162-187	3	23
93	Joint detection and decoding for polar-coded OFDM-IDMA systems 2017,		1
92	Using Fermat number transform to accelerate convolutional neural network 2017,		3
91	Multichannel Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems 2017 ,		4
90	Efficient fast convolution architecture based on stochastic computing 2017,		2
89	Algorithm and architecture for joint detection and decoding for MIMO with LDPC codes 2017,		3
88	Improved polar decoder based on deep learning 2017 ,		47
87	DC MUX PUF: A highly reliable feed-back MUX PUF based on measuring duty cycle 2017,		1
86	Graph-merged detection and decoding of polar-coded MIMO systems 2017,		1
85	LD-IMPSO Based Power Adjustment Algorithm for eICIC in QoS Constrained Hyper Dense HetNets. <i>Wireless Personal Communications</i> , 2016 , 88, 111-131	1.9	2
84	Segmented CRC-Aided SC List Polar Decoding 2016 ,		29
83	Efficient architecture for soft-output massive MIMO detection with Gauss-Seidel method 2016,		64
82	Downlink and Uplink Transmissions in Distributed Large-Scale MIMO Systems for BD Precoding with Partial Calibration 2016 ,		2
81	Pipelined belief propagation polar decoders 2016 ,		16
80	Joint detection and decoding for MIMO systems with polar codes 2016,		7
79	A 20-to-75 dB gain 5-dB noise figure broadband 60-GHz receiver with digital calibration 2016 ,		2
78	Generalized turbo signal recovery for nonlinear measurements and orthogonal sensing matrices 2016 ,		23
77	An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. <i>Science China Information Sciences</i> , 2016 , 59, 1	3.4	51

(2015-2016)

76	. IEEE Transactions on Vehicular Technology, 2016 , 65, 3243-3254	6.8	134
75	CSI Impaired Precoding Optimization for Energy-Efficient MIMO Communications Under Total Power Constraint. <i>IEEE Communications Letters</i> , 2016 , 20, 514-517	3.8	7
74	Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding. <i>Science China Information Sciences</i> , 2016 , 59, 1-14	3.4	16
73	TDD reciprocity calibration for multi-user massive MIMO systems with iterative coordinate descent. <i>Science China Information Sciences</i> , 2016 , 59, 1	3.4	7
72	Recent advances and future challenges for massive MIMO channel measurements and models. <i>Science China Information Sciences</i> , 2016 , 59, 1-16	3.4	54
71	. IEEE Transactions on Vehicular Technology, 2016 , 65, 6119-6127	6.8	172
70	The path to 5G: mmWave aspects. <i>Journal of Communications and Information Networks</i> , 2016 , 1, 1-18		11
69	Low-latency software successive cancellation list polar decoder using stage-located copy 2016 ,		10
68	Low-complexity segmented CRC-aided SC stack decoder for polar codes 2016 ,		5
67	Successive Cancellation Heap Polar Decoding 2016 ,		4
66	Hardware Efficient and Low-Latency CA-SCL Decoder Based on Distributed Sorting 2016,		17
65	Efficient Hardware Architecture for Compressed Sensing with DFT Sensing Matrix 2016 ,		4
64	Efficient SOR-based detection and architecture for large-scale MIMO uplink 2016,		10
63	On Power Allocation for Incremental Redundancy Hybrid ARQ. <i>IEEE Transactions on Wireless Communications</i> , 2015 , 14, 1506-1518	9.6	8
62	. IEEE Transactions on Communications, 2015 , 63, 2924-2935	6.9	4
61	Efficient matrix inversion architecture for linear detection in massive MIMO systems 2015,		16
60	. IEEE Transactions on Vehicular Technology, 2015 , 64, 5083-5090	6.8	33
59	Energy spectral efficiency tradeoff in downlink OFDMA network. <i>International Journal of Communication Systems</i> , 2015 , 28, 1450-1461	1.7	14

58	Efficient early termination schemes for belief-propagation decoding of polar codes 2015,		19
57	Coefficient adjustment matrix inversion approach and architecture for massive MIMO systems 2015		12
56	Spectral efficiency analysis of large-scale distributed antenna system in a composite correlated Rayleigh fading channel. <i>IET Communications</i> , 2015 , 9, 681-688	1.3	22
55	Reciprocity of mutual coupling for TDD massive MIMO systems 2015,		10
54	Improved symbol-based belief propagation detection for large-scale MIMO 2015,		22
53	Cellular architecture and key technologies for 5G wireless communication networks 2014 , 52, 122-130		1253
52	. IEEE Transactions on Vehicular Technology, 2014 , 63, 1223-1231	6.8	72
51	Device discovery for multihop cellular networks with its application in LTE. <i>IEEE Wireless Communications</i> , 2014 , 21, 24-34	13.4	21
50	Hardware architecture for list successive cancellation polar decoder 2014,		18
49	Efficient Decoder Architecture for Single Block-Row Quasi-Cyclic LDPC Codes. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2014 , 61, 793-797	3.5	4
48	Spectral efficiency analysis of single-cell multi-user large-scale distributed antenna system. <i>IET Communications</i> , 2014 , 8, 2213-2221	1.3	22
47	Uplink Sum-Rate Analysis of Massive MIMO System with Pilot Contamination and CSI Delay. Wireless Personal Communications, 2014 , 78, 297-312	1.9	3
46	Proximity discovery for device-to-device communications over a cellular network 2014 , 52, 98-107		43
45	Heterogenous QoS-guaranteed load balancing in 3GPP LTE multicell fractional frequency reuse network. <i>Transactions on Emerging Telecommunications Technologies</i> , 2014 , 25, 1169-1183	1.9	9
44	Improved K-best algorithm for low-complexity MIMO detector 2014,		4
43	. IEEE Transactions on Signal Processing, 2014 , 62, 1348-1360	4.8	9
42	Improved MPSO based eICIC algorithm for LTE-a ultra dense HetNets 2014 ,		3
41	Energy efficiency of distributed MIMO systems 2014 ,		4

(2011-2013)

40	Three novel opportunistic scheduling algorithms in CoMP-CSB scenario. <i>Science China Information Sciences</i> , 2013 , 56, 1-12	3.4	
39	Uplink sum-rate analysis of multi-cell multi-user massive MIMO system 2013,		21
38	. IEEE Journal on Selected Areas in Communications, 2013 , 31, 2112-2127	14.2	91
37	Differential Edge-Triggered Flip-Flops Using Neuron-MOS Transistors 2013 ,		1
36	QoS and channel state aware load balancing in 3GPP LTE multi-cell networks. <i>Science China Information Sciences</i> , 2013 , 56, 1-12	3.4	1
35	A unified algorithm for mobility load balancing in 3GPP LTE multi-cell networks. <i>Science China Information Sciences</i> , 2013 , 56, 1-11	3.4	1
34	A clocked differential switch logic using floating-gate MOS transistors 2013,		2
33	Quaternary edge-triggered flip-flop with neuron-MOS literal circuit 2013 ,		2
32	Energy and spectral efficiency trade-off for the downlink OFDM-distributed antenna systems. <i>International Journal of Communication Systems</i> , 2013 , 27, n/a-n/a	1.7	1
31	Dual-turbo receiver architecture for turbo coded MIMO-OFDM systems. <i>Science China Information Sciences</i> , 2012 , 55, 384-395	3.4	3
30	Energy Efficiency and Spectral Efficiency Tradeoff in Downlink Distributed Antenna Systems. <i>IEEE Wireless Communications Letters</i> , 2012 , 1, 153-156	5.9	87
29	An efficient sparse channel estimator combining time-domain LS and iterative shrinkage for OFDM systems with IQ-imbalances. <i>Science China Information Sciences</i> , 2012 , 55, 2604-2610	3.4	6
28	Mobile localisation with TOA, AOA and Doppler estimation in NLOS environments. <i>Transactions on Emerging Telecommunications Technologies</i> , 2012 , 23, 499-507	1.9	4
27	Dynamic Load Balancing in 3GPP LTE Multi-Cell Fractional Frequency Reuse Networks 2012 ,		5
26	LTE ?????QoS ?????????. Scientia Sinica Informationis, 2012 , 42, 674-686	2.3	1
25	Improved Channel Estimator for MIMO-SCBT Systems Using Quadriphase Complementary Sequences. <i>IEICE Transactions on Communications</i> , 2011 , E94-B, 342-345	0.5	1
24	Joint optimization on load balancing and network load in 3GPP LTE multi-cell networks 2011,		8
23	QoS-Aware Load Balancing in 3GPP Long Term Evolution Multi-Cell Networks 2011 ,		17

22	Cell Edge Performance of Cellular Mobile Systems. <i>IEEE Journal on Selected Areas in Communications</i> , 2011 , 29, 1139-1150	14.2	63
21	A survey of next generation mobile communications research in China. Science Bulletin, 2011, 56, 2875-	2888	9
20	A novel energy saving strategy for LTE HetNet 2011 ,		4
19	Spectral efficiency analysis of mobile Femtocell based cellular systems 2011 ,		36
18	Optimal Routing Strategy in Multi-Hop Relaying Networks. <i>IEICE Transactions on Communications</i> , 2011 , E94-B, 2378-2381	0.5	
17	Joint estimation of channel parameters for very low signal-to-noise ratio environment in mobile radio propagations. <i>Radio Science</i> , 2010 , 45, n/a-n/a	1.4	4
16	Cooperative distributed antenna systems for mobile communications [Coordinated and Distributed MIMO]. <i>IEEE Wireless Communications</i> , 2010 , 17, 35-43	13.4	114
15	A Novel Bi-directional Relaying Scheme with Low Complexity. <i>IEICE Transactions on Communications</i> , 2010 , E93-B, 423-427	0.5	
14	An upper bound on the SER of transmit beamforming in correlated rayleigh fading. <i>IEEE Transactions on Communications</i> , 2010 , 58, 457-462	6.9	5
13	Frequency-interleaved DFT-spread OFDM transmission with an iterative receiver 2009,		1
12			
	New insights into weighted bit-flipping decoding. <i>IEEE Transactions on Communications</i> , 2009 , 57, 2177-	-261.80	19
11	New insights into weighted bit-flipping decoding. <i>IEEE Transactions on Communications</i> , 2009 , 57, 2177-2009. Unifying eigen-mode MIMO transmission. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 2269-2009.		
11			
	Unifying eigen-mode MIMO transmission. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 2269-	-2278	1
10	Unifying eigen-mode MIMO transmission. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 2269-A Doppler shift estimator in radio propagations. <i>Radio Science</i> , 2009 , 44, n/a-n/a Grid-search-based hybrid TOA/AOA location techniques for NLOS environments. <i>IEEE</i>	1.4	1
10	Unifying eigen-mode MIMO transmission. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 2269-A Doppler shift estimator in radio propagations. <i>Radio Science</i> , 2009 , 44, n/a-n/a Grid-search-based hybrid TOA/AOA location techniques for NLOS environments. <i>IEEE Communications Letters</i> , 2009 , 13, 254-256 Data Throughputs of Noise-Limited MIMO Cellular Systems. <i>IEEE Transactions on Signal Processing</i> ,	1.4 3.8	6 35
10 9 8	Unifying eigen-mode MIMO transmission. <i>Science in China Series F: Information Sciences</i> , 2009 , 52, 2269-A Doppler shift estimator in radio propagations. <i>Radio Science</i> , 2009 , 44, n/a-n/a Grid-search-based hybrid TOA/AOA location techniques for NLOS environments. <i>IEEE Communications Letters</i> , 2009 , 13, 254-256 Data Throughputs of Noise-Limited MIMO Cellular Systems. <i>IEEE Transactions on Signal Processing</i> , 2008 , 56, 2165-2170 On the Ergodic Capacity of Rank-\$1\$ Ricean-Fading MIMO Channels. <i>IEEE Transactions on</i>	2278 1.4 3.8 4.8	1 6 35 3

LIST OF PUBLICATIONS

4	Parallel Weighted Bit-Flipping Decoding. <i>IEEE Communications Letters</i> , 2007 , 11, 671-673	3.8	32
3	Low complexity turbo receiver for multi-user STBC block transmission systems. <i>IEEE Transactions on Wireless Communications</i> , 2006 , 5, 2625-2632	9.6	15
2	Fast Weighted Bit-Flipping Decoding of Finite-Geometry LDPC Codes 2006,		6
1	An efficient digital implementation of multicarrier CDMA system based on generalized DFT filter Banks. <i>IEEE Journal on Selected Areas in Communications</i> , 2006 , 24, 1189-1198	14.2	9