Ke-Jia Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2782372/publications.pdf

Version: 2024-02-01

		623188	610482
28	607	14	24
papers	citations	h-index	g-index
30	30	30	829
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ubiquitination Regulators Discovered by Virtual Screening for the Treatment of Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 665646.	1.8	6
2	Application of metal–organic framework for the adsorption and detection of food contamination. TrAC - Trends in Analytical Chemistry, 2021, 143, 116384.	5.8	24
3	Time-Resolved Luminescent High-Throughput Screening Platform for Lysosomotropic Compounds in Living Cells. ACS Sensors, 2021, 6, 166-174.	4.0	6
4	Simultaneous blocking of the panâ€RAF and S100B pathways as a synergistic therapeutic strategy against malignant melanoma. Journal of Cellular and Molecular Medicine, 2021, 25, 1972-1981.	1.6	5
5	Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. Journal of Materials Chemistry B, 2020, 8, 3249-3260.	2.9	11
6	Peptideâ€Conjugated Longâ€Lived Theranostic Imaging for Targeting GRPr in Cancer and Immune Cells. Angewandte Chemie, 2020, 132, 18053-18058.	1.6	2
7	Interfering with S100B–effector protein interactions for cancer therapy. Drug Discovery Today, 2020, 25, 1754-1761.	3.2	8
8	Innentitelbild: Peptideâ€Conjugated Longâ€Lived Theranostic Imaging for Targeting GRPr in Cancer and Immune Cells (Angew. Chem. 41/2020). Angewandte Chemie, 2020, 132, 17914-17914.	1.6	0
9	Structure-guided discovery of a luminescent theranostic toolkit for living cancer cells and the imaging behavior effect. Chemical Science, 2020, 11, 11404-11412.	3.7	16
10	Recent Progress and Development of G-Quadruplex-Based Luminescent Assays for Ochratoxin A Detection. Frontiers in Chemistry, 2020, 8, 767.	1.8	11
11	Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS Applied Bio Materials, 2020, 3, 2017-2027.	2.3	13
12	Peptideâ€Conjugated Longâ€Lived Theranostic Imaging for Targeting GRPr in Cancer and Immune Cells. Angewandte Chemie - International Edition, 2020, 59, 17897-17902.	7.2	38
13	Iridium(III) Complexes Targeting Apoptotic Cell Death in Cancer Cells. Molecules, 2019, 24, 2739.	1.7	59
14	A portable oligonucleotide-based microfluidic device for the detection of VEGF165 in a three-step suspended-droplet mode. Dalton Transactions, 2019, 48, 9824-9830.	1.6	2
15	Synthesis and Evaluation of Dibenzothiophene Analogues as Pin1 Inhibitors for Cervical Cancer Therapy. ACS Omega, 2019, 4, 9228-9234.	1.6	9
16	Application of label-free techniques in microfluidic for biomolecules detection and circulating tumor cells analysis. TrAC - Trends in Analytical Chemistry, 2019, 117, 78-83.	5.8	20
17	A dual-functional molecular strategy for <i>in situ</i> suppressing and visualizing of neuraminidase in aqueous solution using iridium(<scp>iii</scp>) complexes. Chemical Communications, 2019, 55, 6353-6356.	2.2	36
18	Long-lived iridium(III) complexes as luminescent probes for the detection of periodate in living cells. Sensors and Actuators B: Chemical, 2019, 288, 392-398.	4.0	23

#	Article	IF	CITATIONS
19	Mimicking Strategy for Protein–Protein Interaction Inhibitor Discovery by Virtual Screening. Molecules, 2019, 24, 4428.	1.7	23
20	Small Molecule Pin1 Inhibitor Blocking NFâ€₽B Signaling in Prostate Cancer Cells. Chemistry - an Asian Journal, 2018, 13, 275-279.	1.7	34
21	Structure-based identification of a NEDD8-activating enzyme inhibitor via drug repurposing. European Journal of Medicinal Chemistry, 2018, 143, 1021-1027.	2.6	46
22	Innenrücktitelbild: Selective Inhibition of Lysineâ€Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Tripleâ€Negative Breast Cancer Therapy (Angew. Chem. 40/2018). Angewandte Chemie, 2018, 130, 13533-13533.	1.6	0
23	Iridium(<scp>iii</scp>) complexes as reaction based chemosensors for medical diagnostics. Dalton Transactions, 2018, 47, 15278-15282.	1.6	22
24	Selective Inhibition of Lysineâ€Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Tripleâ€Negative Breast Cancer Therapy. Angewandte Chemie, 2018, 130, 13275-13279.	1.6	19
25	Selective Inhibition of Lysineâ€Specific Demethylase 5A (KDM5A) Using a Rhodium(III) Complex for Tripleâ€Negative Breast Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 13091-13095.	7.2	125
26	Iridium-based probe for luminescent nitric oxide monitoring in live cells. Scientific Reports, 2018, 8, 12467.	1.6	15
27	A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS ONE, 2017, 12, e0177123.	1.1	31
28	An evaluation of genotoxicity and cytotoxicity of melamine in combination with cyanuric acid at three mass ratios. Biomedical and Environmental Sciences, 2014, 27, 641-5.	0.2	1