List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2782215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 2014, 112, 79-91.	1.6	820
2	The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 7, 25.	2.4	712
3	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	1.7	590
4	On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 2010, 150, 38-46.	1.9	494
5	Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research, 2011, 116, .	3.3	408
6	Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9299-9304.	3.3	404
7	Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 2011, 109, 517-534.	1.7	386
8	The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 2009, 97, 321-327.	1.7	338
9	Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters, 2017, 44, 5550-5560.	1.5	305
10	The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 2011, 15, 2303-2316.	1.9	304
11	A Multiscale Soil Moisture and Freeze–Thaw Monitoring Network on the Third Pole. Bulletin of the American Meteorological Society, 2013, 94, 1907-1916.	1.7	288
12	Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 2006, 137, 43-55.	1.9	274
13	Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 2020, 208, 103269.	4.0	259
14	Regional differences of lake evolution across China during 1960s–2015 and its natural and ant ant anthropogenic causes. Remote Sensing of Environment, 2019, 221, 386-404.	4.6	252
15	Evaluation of AMSRâ€E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4466-4475.	1.2	250
16	A hybrid model for estimating global solar radiation. Solar Energy, 2001, 70, 13-22.	2.9	232
17	Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 2014, 125, 281-290.	1.7	225
18	Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters, 2017, 44, 252-260.	1.5	223

#	Article	IF	CITATIONS
19	Solar radiation trend across China in recent decades: a revisit with quality-controlled data. Atmospheric Chemistry and Physics, 2011, 11, 393-406.	1.9	196
20	Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 2013, 483, 61-67.	2.3	191
21	Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake. Science of the Total Environment, 2018, 624, 859-871.	3.9	184
22	Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 2020, 243, 106444.	1.4	180
23	Turbulent Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization. Journal of Applied Meteorology and Climatology, 2008, 47, 276-290.	0.6	163
24	Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theoretical and Applied Climatology, 2013, 113, 671-682.	1.3	160
25	Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 2013, 138, 1-9.	4.6	156
26	The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. Journal of Hydrology, 2014, 513, 154-163.	2.3	156
27	Auto-calibration System Developed to Assimilate AMSR-E Data into a Land Surface Model for Estimating Soil Moisture and the Surface Energy Budget. Journal of the Meteorological Society of Japan, 2007, 85A, 229-242.	0.7	155
28	Observed Coherent Trends of Surface and Upper-Air Wind Speed over China since 1960. Journal of Climate, 2013, 26, 2891-2903.	1.2	150
29	Quality control and estimation of global solar radiation in China. Solar Energy, 2010, 84, 466-475.	2.9	146
30	Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere, 2019, 13, 2221-2239.	1.5	144
31	Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrology and Earth System Sciences, 2009, 13, 687-701.	1.9	137
32	Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. Journal of Hydrology, 2009, 377, 21-34.	2.3	128
33	A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Science in China Series D: Earth Sciences, 2008, 51, 721-729.	0.9	123
34	Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length. Journal of Hydrometeorology, 2010, 11, 995-1006.	0.7	123
35	Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science China Earth Sciences, 2012, 55, 1001-1011. 	2.3	120
36	Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. Journal of Hydrology, 2013, 492, 290-297.	2.3	120

#	Article	IF	CITATIONS
37	Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. Journal of Geophysical Research, 2009, 114, .	3.3	119
38	Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models' wet bias over the Tibetan Plateau. Climate Dynamics, 2018, 51, 3195-3207.	1.7	117
39	An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. Journal of Applied Meteorology and Climatology, 2013, 52, 607-622.	0.6	116
40	The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.	1.9	116
41	Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau. Hydrology and Earth System Sciences, 2009, 13, 1103-1111.	1.9	115
42	Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sensing of Environment, 2016, 179, 36-53.	4.6	115
43	Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?. Journal of Climate, 2020, 33, 8507-8522.	1.2	115
44	Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sensing of Environment, 2019, 233, 111371.	4.6	109
45	Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99). Journal of Geophysical Research, 2009, 114, .	3.3	108
46	Spatialâ€Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnanâ€Guizhou Plateau. Water Resources Research, 2019, 55, 4688-4703.	1.7	108
47	High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sensing of Environment, 2020, 239, 111583.	4.6	106
48	Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5780-5792.	1.2	104
49	Investigation of near-global daytime boundary layer height using high-resolution radiosondes: first results and comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 reanalyses. Atmospheric Chemistry and Physics, 2021, 21, 17079-17097.	1.9	99
50	The Daytime Evolution of the Atmospheric Boundary Layer and Convection over the Tibetan Plateau: Observations and Simulations. Journal of the Meteorological Society of Japan, 2004, 82, 1777-1792.	0.7	96
51	Nearâ€surface air temperature lapse rates in the mainland China during 1962–2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7505-7515.	1.2	96
52	Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. Journal of Geophysical Research, 2011, 116, .	3.3	94
53	Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Applied Energy, 2011, 88, 2480-2489.	5.1	93
54	A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy, 2011, 36, 3179-3188.	4.5	92

#	Article	IF	CITATIONS
55	Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau. Hydrology and Earth System Sciences, 2013, 17, 1607-1618.	1.9	90
56	Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, 2021, 250, 105365.	1.8	86
57	Improvement of surface flux parametrizations with a turbulence-related length. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 2073-2087.	1.0	83
58	Can aerosol loading explain the solar dimming over the Tibetan Plateau?. Geophysical Research Letters, 2012, 39, .	1.5	83
59	Surface Flux Parameterization in the Tibetan Plateau. Boundary-Layer Meteorology, 2003, 106, 245-262.	1.2	82
60	Land surface model calibration through microwave data assimilation for improving soil moisture simulations. Journal of Hydrology, 2016, 533, 266-276.	2.3	82
61	Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Climatic Change, 2018, 147, 149-163.	1.7	82
62	Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective. National Science Review, 2020, 7, 500-515.	4.6	82
63	A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resources Research, 2005, 41, .	1.7	81
64	Dam Construction in Lancangâ€Mekong River Basin Could Mitigate Future Flood Risk From Warmingâ€Induced Intensified Rainfall. Geophysical Research Letters, 2017, 44, 10,378.	1.5	79
65	Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmospheric Chemistry and Physics, 2016, 16, 2543-2557.	1.9	78
66	Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7578-7591.	1.2	77
67	Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 2017, 53, 5085-5103.	1.7	76
68	Validation of a Dual-Pass Microwave Land Data Assimilation System for Estimating Surface Soil Moisture in Semiarid Regions. Journal of Hydrometeorology, 2009, 10, 780-793.	0.7	75
69	Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophysical Research Letters, 2019, 46, 5889-5898.	1.5	75
70	Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Climate Dynamics, 2020, 54, 3525-3539.	1.7	75
71	On the Climatology and Trend of the Atmospheric Heat Source over the Tibetan Plateau: An Experiments-Supported Revisit. Journal of Climate, 2011, 24, 1525-1541.	1.2	74
72	Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. Journal of Hydrology, 2013, 482, 92-104.	2.3	73

#	Article	IF	CITATIONS
73	Progress in the study of oasis-desert interactions. Agricultural and Forest Meteorology, 2016, 230-231, 1-7.	1.9	73
74	The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global and Planetary Change, 2016, 147, 40-53.	1.6	72
75	Interannual Variation of Summer Atmospheric Heat Source over the Tibetan Plateau and the Role of Convection around the Western Maritime Continent. Journal of Climate, 2016, 29, 121-138.	1.2	72
76	Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophysical Research Letters, 2017, 44, 892-900.	1.5	72
77	Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrology and Earth System Sciences, 2017, 21, 5805-5821.	1.9	72
78	Analysis on driving factors of lake surface water temperature for major lakes in Yunnan-Guizhou Plateau. Water Research, 2020, 184, 116018.	5.3	72
79	Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau. Journal of Geophysical Research, 2008, 113, .	3.3	70
80	Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,079.	1.2	70
81	A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth System Science Data, 2019, 11, 1905-1915.	3.7	69
82	Recent trends in surface sensible heat flux on the Tibetan Plateau. Science China Earth Sciences, 2011, 54, 19-28.	2.3	68
83	Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate Dynamics, 2020, 54, 1729-1740.	1.7	67
84	High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Research, 2021, 14, 3969-3976.	5.8	66
85	Temporal and spatial analysis of COVID-19 transmission in China and its influencing factors. International Journal of Infectious Diseases, 2021, 105, 675-685.	1.5	66
86	A dualâ€pass variational data assimilation framework for estimating soil moisture profiles from AMSRâ€E microwave brightness temperature. Journal of Geophysical Research, 2009, 114, .	3.3	65
87	Frozen soil parameterization in a distributed biosphere hydrological model. Hydrology and Earth System Sciences, 2010, 14, 557-571.	1.9	65
88	Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. Journal of Geophysical Research, 2011, 116, .	3.3	64
89	A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau. Remote Sensing of Environment, 2021, 265, 112666.	4.6	64
90	Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau. Journal of Climate, 2017, 30, 5699-5713.	1.2	63

#	Article	IF	CITATIONS
91	Characterizing precipitation in high altitudes of the western Tibetan plateau with a focus on major glacier areas. International Journal of Climatology, 2020, 40, 5114-5127.	1.5	63
92	Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data. Remote Sensing, 2020, 12, 1836.	1.8	62
93	Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. Journal of Geophysical Research, 2005, 110, .	3.3	61
94	An assessment of satellite surface radiation products for highlands with Tibet instrumental data. Geophysical Research Letters, 2006, 33, .	1.5	61
95	Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model. Hydrological Sciences Journal, 2009, 54, 989-1006.	1.2	61
96	Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8857-8868.	1.2	60
97	MicroRNA-155 induction by Mycobacterium bovis BCG enhances ROS production through targeting SHIP1. Molecular Immunology, 2014, 62, 29-36.	1.0	60
98	Added value of kilometer-scale modeling over the third pole region: a CORDEX-CPTP pilot study. Climate Dynamics, 2021, 57, 1673-1687.	1.7	60
99	A New Benchmark for Surface Radiation Products over the East Asia–Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite. Bulletin of the American Meteorological Society, 2022, 103, E873-E888.	1.7	60
100	An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4975-4988.	1.2	59
101	Impacts of wind stilling on solar radiation variability in China. Scientific Reports, 2015, 5, 15135.	1.6	56
102	Revisiting Recent Elevationâ€Dependent Warming on the Tibetan Plateau Using Satelliteâ€Based Data Sets. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8511-8521.	1.2	54
103	A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis. Atmospheric Research, 2021, 256, 105574.	1.8	53
104	The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 2014, 152, 345-355.	4.6	51
105	Impact of urban expansion on vegetation: The case of China (2000–2018). Journal of Environmental Management, 2021, 291, 112598.	3.8	51
106	Development of a 50-year daily surface solar radiation dataset over China. Science China Earth Sciences, 2013, 56, 1555-1565.	2.3	49
107	Evaluating and Improving the Performance of Three 1â€D Lake Models in a Large Deep Lake of the Central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3143-3167. 	1.2	49
108	Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Science Bulletin, 2021, 66, 1146-1150.	4.3	49

#	Article	IF	CITATIONS
109	On the behaviour of the tropopause folding events over the Tibetan Plateau. Atmospheric Chemistry and Physics, 2011, 11, 5113-5122.	1.9	48
110	Comparison of Downscaled Precipitation Data over a Mountainous Watershed: A Case Study in the Heihe River Basin. Journal of Hydrometeorology, 2014, 15, 1560-1574.	0.7	48
111	Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau. Climate Dynamics, 2018, 50, 2443-2455.	1.7	48
112	Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sensing of Environment, 2022, 271, 112891.	4.6	47
113	Analytical Solution of Surface Layer Similarity Equations. Journal of Applied Meteorology and Climatology, 2001, 40, 1647-1653.	1.7	45
114	Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin, China. Agricultural and Forest Meteorology, 2018, 249, 210-227.	1.9	45
115	Does ERA5 outperform satellite products in estimating atmospheric downward longwave radiation at the surface?. Atmospheric Research, 2021, 252, 105453.	1.8	45
116	Estimating surface solar radiation from upper-air humidity. Solar Energy, 2002, 72, 177-186.	2.9	44
117	Analysis of the Surface Energy Budget at a Site of GAME/Tibet using a Single-Source Model. Journal of the Meteorological Society of Japan, 2004, 82, 131-153.	0.7	44
118	Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 2018, 563, 382-394.	2.3	44
119	Community Integrated Earth System Model (CIESM): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002036.	1.3	44
120	A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019). Scientific Data, 2021, 8, 143.	2.4	44
121	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2806-2828.	1.3	43
122	Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 5304-5316.	2.7	43
123	Method Development for Estimating Sensible Heat Flux over the Tibetan Plateau from CMA Data. Journal of Applied Meteorology and Climatology, 2009, 48, 2474-2486.	0.6	41
124	A time-series analysis of urbanization-induced impervious surface area extent in the Dianchi Lake watershed from 1988–2017. International Journal of Remote Sensing, 2019, 40, 573-592.	1.3	41
125	Characterizing Surface Albedo of Shallow Fresh Snow and Its Importance for Snow Ablation on the Interior of the Tibetan Plateau. Journal of Hydrometeorology, 2020, 21, 815-827.	0.7	41
126	Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier. Boundary-Layer Meteorology, 2011, 139, 307-332.	1.2	40

#	Article	IF	CITATIONS
127	Tibetan Plateau Impacts on Global Dust Transport in the Upper Troposphere. Journal of Climate, 2018, 31, 4745-4756.	1.2	40
128	Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Science China Earth Sciences, 2020, 63, 1113-1125.	2.3	40
129	Development of an enthalpyâ€based frozen soil model and its validation in a cold region in China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5259-5280.	1.2	39
130	Improving snow process modeling with satelliteâ€based estimation of nearâ€surfaceâ€airâ€temperature lapse rate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,005.	1.2	39
131	Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau. Environmental Research Letters, 2021, 16, 014011.	2.2	39
132	A China-Japan Cooperative JICA Atmospheric Observing Network over the Tibetan Plateau (JICA/Tibet) Tj ETQq0 0	0 rgBT /C	Dveglock 10 Tf
133	Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 2017, 18, 1749-1763.	0.7	37
134	The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sensing, 2018, 10, 535.	1.8	37
135	Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau. Climate Dynamics, 2019, 53, 707-720.	1.7	37
136	Spatial–temporal variations in urbanization in Kunming and their impact on urban lake water quality. Land Degradation and Development, 2020, 31, 1392-1407.	1.8	37
137	Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts. Water Resources Research, 2010, 46, .	1.7	36
138	Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas. Atmospheric Chemistry and Physics, 2014, 14, 3133-3149.	1.9	36
139	Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmospheric Research, 2021, 264, 105875.	1.8	36
140	Comparison of the Spatial Characteristics of Four Remotely Sensed Leaf Area Index Products over China: Direct Validation and Relative Uncertainties. Remote Sensing, 2018, 10, 148.	1.8	35
141	Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Scientific Reports, 2015, 5, 7820.	1.6	34
142	Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations*. Journal of Climate, 2015, 28, 1707-1722.	1.2	32
143	Optimal Dam Operation during Flood Season Using a Distributed Hydrological Model and a Heuristic Algorithm. Journal of Hydrologic Engineering - ASCE, 2010, 15, 580-586.	0.8	31
144	Hierarchical Bayesian space-time estimation of monthly maximum and minimum surface air temperature. Remote Sensing of Environment, 2018, 211, 48-58.	4.6	31

#	Article	IF	CITATIONS
145	Can plastic mulch save water at night in irrigated croplands?. Journal of Hydrology, 2018, 564, 667-681.	2.3	31
146	Development and Evaluation of an Ensembleâ€Based Data Assimilation System for Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions. Journal of Advances in Modeling Earth Systems, 2019, 11, 2503-2522.	1.3	31
147	Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snowâ€albedo feedback. International Journal of Climatology, 2020, 40, 1644-1655.	1.5	31
148	Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design. Geoscientific Model Development, 2021, 14, 4465-4494.	1.3	31
149	Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. International Journal of Applied Earth Observation and Geoinformation, 2012, 17, 43-54.	1.4	30
150	Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000-2010. International Journal of Climatology, 2015, 35, 1394-1404.	1.5	30
151	Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 2016, 218-219, 288-297.	1.9	30
152	Development of a Water and Enthalpy Budgetâ€based Glacier mass balance Model (<scp>WEBâ€GM</scp>) and its preliminary validation. Water Resources Research, 2017, 53, 3146-3178.	1.7	30
153	A review of the estimation of downward surface shortwave radiation based on satellite data: Methods, progress and problems. Science China Earth Sciences, 2020, 63, 774-789.	2.3	30
154	Initial CEOP-based Review of the Prediction Skill of Operational General Circulation Models and Land Surface Models. Journal of the Meteorological Society of Japan, 2007, 85A, 99-116.	0.7	29
155	On the use of GPS measurements for Moderate Resolution Imaging Spectrometer precipitable water vapor evaluation over southern Tibet. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
156	A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 2012, 17, 76-84.	1.4	29
157	An efficient algorithm for calculating photosynthetically active radiation with MODIS products. Remote Sensing of Environment, 2017, 194, 146-154.	4.6	29
158	A revisit to decadal change of aerosol optical depth and its impact on global radiation over China. Atmospheric Environment, 2017, 150, 106-115.	1.9	29
159	The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	29
160	Estimation of Daily Mean Photosynthetically Active Radiation under All-Sky Conditions Based on Relative Sunshine Data. Journal of Applied Meteorology and Climatology, 2012, 51, 150-160.	0.6	28
161	An Algorithm Based on the Standard Deviation of Passive Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2775-2783.	2.7	28
162	Daily air temperature estimation on glacier surfaces in the Tibetan Plateau using MODIS LST data. Journal of Glaciology, 2018, 64, 132-147.	1.1	28

#	Article	IF	CITATIONS
163	Impact of summer monsoon on the elevationâ€dependence of meteorological variables in the south of central Himalaya. International Journal of Climatology, 2018, 38, 1748-1759.	1.5	28
164	An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas. Journal of Hydrology, 2018, 562, 599-608.	2.3	28
165	Last-decade progress in understanding and modeling the land surface processes on the Tibetan Plateau. Hydrology and Earth System Sciences, 2020, 24, 5745-5758.	1.9	28
166	Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation From MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3558-3571.	2.7	26
167	Groundâ€Based Observations Reveal Unique Valley Precipitation Patterns in the Central Himalaya. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031502.	1.2	26
168	Wind-induced natural ventilation of re-entrant bays in a high-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 79-90.	1.7	25
169	A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau. Science Bulletin, 2021, 66, 2358-2361.	4.3	25
170	Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019). Bulletin of the American Meteorological Society, 2021, 102, E2086-E2105.	1.7	25
171	The characteristics and parameterization of aerodynamic roughness length over heterogeneous surfaces. Advances in Atmospheric Sciences, 2009, 26, 180-190.	1.9	24
172	Reconstruction of daily photosynthetically active radiation and its trends over China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,292.	1.2	24
173	Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years. Environmental Pollution, 2020, 265, 114878.	3.7	24
174	Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. Journal of Hydrology, 2015, 523, 170-178.	2.3	23
175	Estimation of the Regional Evaporative Fraction over the Tibetan Plateau Area by Using Landsat-7 ETM Data and the Field Observations. Journal of the Meteorological Society of Japan, 2007, 85A, 295-309.	0.7	22
176	Efficient cleaning extraction of silver from spent symbiosis lead-zinc mine assisted by ultrasound in sodium thiosulfate system. Ultrasonics Sonochemistry, 2018, 49, 118-127.	3.8	22
177	Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. Journal of Hydrology: Regional Studies, 2021, 36, 100873.	1.0	22
178	Weakening sensible heat source over the Tibetan Plateau revisited: effects of the land–atmosphere thermal coupling. Theoretical and Applied Climatology, 2011, 104, 1-12.	1.3	20
179	On the Application of the Priestley–Taylor Relation on Sub-daily Time Scales. Boundary-Layer Meteorology, 2015, 156, 489-499.	1.2	20
180	IFN-γ differentially regulates subsets of Gr-1+CD11b+ myeloid cells in chronic inflammation. Molecular Immunology, 2015, 66, 451-462.	1.0	20

#	Article	IF	CITATIONS
181	Development of a coupled land–atmosphere satellite data assimilation system for improved local atmospheric simulations. Remote Sensing of Environment, 2008, 112, 720-734.	4.6	19
182	Evaluations of Land–Ocean Skin Temperatures of the ISCCP Satellite Retrievals and the NCEP and ERA Reanalyses. Journal of Climate, 2008, 21, 308-330.	1.2	19
183	Evaluation of surface albedo from GEWEX-SRB and ISCCP-FD data against validated MODIS product over the Tibetan Plateau. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
184	Development of the Coupled Atmosphere and Land Data Assimilation System (CALDAS) and Its Application Over the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 4227-4242.	2.7	19
185	First Effort for Constructing a Direct Solar Radiation Data Set in China for Solar Energy Applications. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1724-1734.	1.2	19
186	Evaluation of the Common Land Model (CoLM) from the Perspective of Water and Energy Budget Simulation: Towards Inclusion in CMIP6. Atmosphere, 2017, 8, 141.	1.0	18
187	Improving Land Surface Temperature Simulation in CoLM Over the Tibetan Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed Clumping Index and Modelâ€Simulated Leaf Area Index. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2620-2642.	1.2	18
188	Sensitivity of soil freeze/thaw dynamics to environmental conditions at different spatial scales in the central Tibetan Plateau. Science of the Total Environment, 2020, 734, 139261.	3.9	18
189	Significant Land Contributions to Interannual Predictability of East Asian Summer Monsoon Rainfall. Earth's Future, 2021, 9, e2020EF001762.	2.4	18
190	Precipitation recycling ratio and water vapor sources on the Tibetan Plateau. Science China Earth Sciences, 2022, 65, 584-588.	2.3	18
191	Optimal Exploitation of AMSR-E Signals for Improving Soil Moisture Estimation Through Land Data Assimilation. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 399-410.	2.7	17
192	Pseudomonas aeruginosa promotes autophagy to suppress macrophage-mediated bacterial eradication. International Immunopharmacology, 2016, 38, 214-222.	1.7	17
193	Progress and Challenges in Studying Regional Permafrost in the Tibetan Plateau Using Satellite Remote Sensing and Models. Frontiers in Earth Science, 2020, 8, .	0.8	17
194	Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales. Water (Switzerland), 2018, 10, 969.	1.2	16
195	Dependence of remote sensing accuracy of global horizontal irradiance at different scales on satellite sampling frequency. Solar Energy, 2019, 193, 597-603.	2.9	16
196	An Improvement of the Radiative Transfer Model Component of a Land Data Assimilation System and Its Validation on Different Land Characteristics. Remote Sensing, 2015, 7, 6358-6379.	1.8	15
197	The cause of rapid lake expansion in the Tibetan Plateau: climate wetting or warming?. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1236.	2.8	15
198	Global evaluation of terrestrial near-surface air temperature and specific humidity retrievals from the Atmospheric Infrared Sounder (AIRS). Remote Sensing of Environment, 2021, 252, 112146.	4.6	15

#	Article	IF	CITATIONS
199	The South Asia Monsoon Break Promotes Grass Growth on the Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005951.	1.3	15
200	The impact of COVID-19 on urban PM2.5 —taking Hubei Province as an example. Environmental Pollution, 2022, 294, 118633.	3.7	15
201	Very-high-cycle fatigue crack initiation and propagation behaviours of magnesium alloy ZK60. Materials Science and Technology, 2018, 34, 639-647.	0.8	14
202	Regional disparities in warm season rainfall changes over arid eastern–central Asia. Scientific Reports, 2018, 8, 13051.	1.6	14
203	Enhancing SWOT discharge assimilation through spatiotemporal correlations. Remote Sensing of Environment, 2019, 234, 111450.	4.6	14
204	Comparative Proteomics Profiling Illuminates the Fruitlet Abscission Mechanism of Sweet Cherry as Induced by Embryo Abortion. International Journal of Molecular Sciences, 2020, 21, 1200.	1.8	14
205	Hollow CoS <i>_x</i> Nanoparticles Grown on FeCo-LDH Microtubes for Enhanced Electrocatalytic Performances for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 12211-12223.	2.5	14
206	Improving surface soil moisture retrievals through a novel assimilation algorithm to estimate both model and observation errors. Remote Sensing of Environment, 2022, 269, 112802.	4.6	14
207	Comments on "Estimating Soil Water Contents from Soil Temperature Measurements by Using an Adaptive Kalman Filter― Journal of Applied Meteorology and Climatology, 2005, 44, 546-550.	1.7	13
208	The widening urbanization gap between the Three Northeast Provinces and the Yangtze River Delta under China's economic reform from 1984 to 2014. International Journal of Sustainable Development and World Ecology, 2018, 25, 262-275.	3.2	13
209	Connections Between a Late Summer Snowstorm Over the Southwestern Tibetan Plateau and a Concurrent Indian Monsoon Lowâ€Pressure System. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,676.	1.2	13
210	Evaluation of Three Satellite-Based Precipitation Products Over the Lower Mekong River Basin Using Rain Gauge Observations and Hydrological Modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2357-2373.	2.3	13
211	The Formation of a Dryâ€Belt in the North Side of Central Himalaya Mountains. Geophysical Research Letters, 2019, 46, 2993-3000.	1.5	13
212	Characterizing Uncertainties in Ground "Truth―of Precipitation Over Complex Terrain Through Highâ€Resolution Numerical Modeling. Geophysical Research Letters, 2021, 48, e2020GL091950.	1.5	13
213	Land-surface evapotranspiration derived from a first-principles primary production model. Environmental Research Letters, 2021, 16, 104047.	2.2	13
214	Evaluation of AIRS Precipitable Water Vapor against Ground-based GPS Measurements over the Tibetan Plateau and Its Surroundings. Journal of the Meteorological Society of Japan, 2012, 90C, 87-98.	0.7	12
215	MRP8/14 induces autophagy to eliminate intracellular Mycobacterium bovis BCG. Journal of Infection, 2015, 70, 415-426.	1.7	12
216	Impact of established shrub shelterbelts around oases on the diversity of ground beetles in arid ecosystems of Northwestern China. Insect Conservation and Diversity, 2016, 9, 135-148.	1.4	12

#	Article	IF	CITATIONS
217	Small UAV-based multi-temporal change detection for monitoring cultivated land cover changes in mountainous terrain. Remote Sensing Letters, 2019, 10, 573-582.	0.6	12
218	Discharge Estimates for Ungauged Rivers Flowing over Complex High-Mountainous Regions based Solely on Remote Sensing-Derived Datasets. Remote Sensing, 2020, 12, 1064.	1.8	12
219	Contrasting hydrological and thermal intensities determine seasonal lake-level variations – a case study at Paiku Co on the southern Tibetan Plateau. Hydrology and Earth System Sciences, 2021, 25, 3163-3177.	1.9	12
220	Domino effect of a natural cascade alpine lake system on the Third Pole. , 2022, 1, .		12
221	Satellite monitoring of the surface water and energy budget in the central Tibetan Plateau. Advances in Atmospheric Sciences, 2008, 25, 974-985.	1.9	11
222	Spatiotemporal patterns of PM2.5 in the Beijing–Tianjin–Hebei region during 2013–2016. , 2017, 1, 95-10)3.	11
223	GIS-Based Rapid Disaster Loss Assessment for Earthquakes. IEEE Access, 2019, 7, 6129-6139.	2.6	11
224	Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau. Cryosphere, 2021, 15, 199-214.	1.5	11
225	Representation of Stony Surfaceâ€Atmosphere Interactions in WRF Reduces Cold and Wet Biases for the Southern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035291.	1.2	11
226	Atmospheric simulationâ€based precipitation datasets outperform satelliteâ€based products in closing basinâ€wide water budget in the eastern Tibetan Plateau. International Journal of Climatology, 2022, 42, 7252-7268.	1.5	11
227	The role of cloud height and warming in the decadal weakening of atmospheric heat source over the Tibetan Plateau. Science China Earth Sciences, 2015, 58, 395-403.	2.3	10
228	Changing spring phenology dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960–2013. Advances in Atmospheric Sciences, 2018, 35, 116-126.	1.9	10
229	Centrifuge modeling of the pile foundation reinforcement on slopes subjected to uneven settlement. Bulletin of Engineering Geology and the Environment, 2020, 79, 2647-2658.	1.6	10
230	Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dynamics, 2021, 56, 2113-2126.	1.7	10
231	Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: Observation and parameterization. Journal of Hydrometeorology, 2021, , .	0.7	10
232	Summer afternoon precipitation associated with wind convergence near the Himalayan glacier fronts. Atmospheric Research, 2021, 259, 105658.	1.8	10
233	Diff isomiRs: Large-scale detection of differential isomiRs for understanding non-coding regulated stress omics in plants. Scientific Reports, 2019, 9, 1406.	1.6	9
234	Retrieval of Atmospheric Integrated Water Vapor and Cloud Liquid Water Content Over the Ocean From Satellite Data Using the 1-D-Var Ice Cloud Microphysics Data Assimilation System (IMDAS). IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 119-129.	2.7	8

#	Article	IF	CITATIONS
235	tRNA Derived smallRNAs: smallRNAs Repertoire Has Yet to Be Decoded in Plants. Frontiers in Plant Science, 2017, 8, 1167.	1.7	8
236	Investigation on the recovery of gold from pretreated cyanide tailings using chlorination leaching process. Separation Science and Technology, 2021, 56, 45-53.	1.3	8
237	Hierarchical MnCo ₂ O ₄ nanowire@NiFe layered double hydroxide nanosheet heterostructures on Ni foam for overall water splitting. CrystEngComm, 2021, 23, 7141-7150.	1.3	8
238	Moisture source variations for summer rainfall in different intensity classes over Huaihe River Valley, China. Climate Dynamics, 2021, 57, 1121-1133.	1.7	8
239	Plant IsomiR Atlas: Large Scale Detection, Profiling, and Target Repertoire of IsomiRs in Plants. Frontiers in Plant Science, 2018, 9, 1881.	1.7	7
240	Method development for estimating soil organic carbon content in an alpine region using soil moisture data. Science China Earth Sciences, 2020, 63, 591-601.	2.3	7
241	Precipitation events impact on urban lake surface water temperature under the perspective of macroscopic scale. Environmental Science and Pollution Research, 2021, 28, 16767-16780.	2.7	7
242	Fusing microwave and optical satellite observations for high resolution soil moisture data products. , 2017, , .		6
243	Impacts of Large-Area Impervious Surfaces on Regional Land Surface Temperature in the Great Pearl River Delta, China. Journal of the Indian Society of Remote Sensing, 2019, 47, 1831-1845.	1.2	6
244	Hydrological characteristics and changes in the Nu-Salween River basin revealed with model-based reconstructed data. Journal of Mountain Science, 2021, 18, 2982-3002.	0.8	6
245	Linkage between anomalies of pre-summer thawing of frozen soil over the Tibetan Plateau and summer precipitation in East Asia. Environmental Research Letters, 2021, 16, 114030.	2.2	6
246	Assessment of the Ecological Impacts of Coal Mining and Restoration in Alpine Areas: A Case Study of the Muli Coalfield on the Qinghai-Tibet Plateau. IEEE Access, 2021, 9, 162919-162934.	2.6	6
247	Bias correction of satellite soil moisture through data assimilation. Journal of Hydrology, 2022, 610, 127947.	2.3	6
248	Coupling natural and human processes to simulate changes in the water environment in the Dianchi Lake basin, China. Geosystem Engineering, 2017, 20, 207-215.	0.7	5
249	Method for the Large-Scale Identification of phasiRNAs in Brachypodium distachyon. Methods in Molecular Biology, 2018, 1667, 187-194.	0.4	5
250	Simulating Arctic 2-m air temperature and its linear trends using the HIRHAM5 regional climate model. Atmospheric Research, 2019, 217, 137-149.	1.8	5
251	Effects of Sodium Peroxide Additives on Dielectric Properties and Microwave Roasting Mechanism of Zinc Sulfide Concentrate. Jom, 2020, 72, 1920-1926.	0.9	5
252	Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg–Gd–Y–Zr Alloy. Materials, 2018, 11, 2429.	1.3	4

#	Article	IF	CITATIONS
253	Distinct temperature changes between north and south sides of central–eastern Himalayas since 1970s. International Journal of Climatology, 2020, 40, 4300-4308.	1.5	4
254	Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	4
255	How Accurate Are Satellite-Derived Surface Solar Radiation Products over Tropical Oceans?. Journal of Atmospheric and Oceanic Technology, 2021, 38, 283-291.	0.5	4
256	Global Patterns of Vegetation Response to Short-Term Surface Water Availability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8273-8286.	2.3	4
257	The Expansion Dynamics and Modes of Impervious Surfaces in the Guangdong-Hong Kong-Macau Bay Area, China. Land, 2021, 10, 1167.	1.2	4
258	Contributions of Weakly Coupled Data Assimilation–Based Land Initialization to Interannual Predictability of Summer Climate over Europe. Journal of Climate, 2022, 35, 517-535.	1.2	4
259	Tibetan Plateau Temperature Extreme Changes and Their Elevation Dependency From Groundâ€Based Observations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
260	An optimal approach for crack extraction from UAV sub-images after cutting. International Journal of Remote Sensing, 2022, 43, 2638-2659.	1.3	4
261	A PCA-LSTM-Based Method for Fault Diagnosis and Data Recovery of Dry-Type Transformer Temperature Monitoring Sensor. Applied Sciences (Switzerland), 2022, 12, 5624.	1.3	4
262	Satellite-Based Assessment of Meteorological and Agricultural Drought in Mainland Southeast Asia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6180-6189.	2.3	4
263	Synthesis of 2-(4-substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 347 Td (benzyl-1,4-diazepan-1-yl)-N- inotropic evaluation. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4464-4467.	(3,4-dihyc 1.0	lro-3-oxo-2H- 3
264	Protocols for miRNA Target Prediction in Plants. Methods in Molecular Biology, 2019, 1970, 65-73.	0.4	3
265	Impact of climate warming on the surface water temperature of plateau lake. Acta Geophysica, 2021, 69, 895-907.	1.0	3
266	Katabatic Flow Structures Indicative of the Flux Dissimilarity for Stable Stratification. Boundary-Layer Meteorology, 2022, 182, 379-415.	1.2	3
267	Potential of Mapping Global Soil Texture Type From SMAP Soil Moisture Product: A Pilot Study. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	3
268	A simple framework to characterize land aridity based on surface energy partitioning regimes. Environmental Research Letters, 2022, 17, 034008.	2.2	3
269	Multi-Source Hydrological Data Products to Monitor High Asian River Basins and Regional Water Security. Remote Sensing, 2021, 13, 5122.	1.8	3
270	Improving long-term impervious surface percentage mapping in mountainous areas based on multi-source remote sensing data. Geocarto International, 2022, 37, 12943-12965.	1.7	3

#	Article	IF	CITATIONS
271	Temporal and Spatial Effects of Urbanization on Regional Thermal Comfort. Land, 2022, 11, 688.	1.2	3
272	The Development of 1-D Ice Cloud Microphysics Data Assimilation System (IMDAS) for Cloud Parameter Retrievals by Integrating Satellite Data. , 2008, , .		2
273	The phase transformation of R2O-CaO-SiO2-F glass-ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 49-52.	0.4	2
274	A novel segmentation method of high resolution remote sensing image based on multi-feature object-oriented Markov random fields model. , 2011, , .		2
275	The study of urban rainstorm waterlogging scenario simulation based on GIS and SWMM model — Take the example of Kunming Dongfeng East Road catchment area. , 2013, , .		2
276	A study on digital isoseisms fast drawing method based on GIS — Take an example of Yunnan Province. , 2013, , .		2
277	Improvement of AMSR2 soil moisture algorithm with considering temperature profile effects in dry soil: A case study in Heihe basin. , 2014, , .		2
278	Toward a satellite-based observation of atmospheric heat source over land. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3124-3133.	1.2	2
279	Organic geochemical characteristics of bark coal in Changguang area: evidence from aromatic hydrocarbons. International Journal of Coal Science and Technology, 2020, 7, 288-298.	2.7	2
280	An Improved Algorithm for Estimating Surface Shortwave Radiation: Preliminary Evaluation With MODIS Products. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	2.7	2
281	Maximum lake surface water temperatures changing characteristics under climate change. Environmental Science and Pollution Research, 2022, 29, 2547-2554.	2.7	2
282	A Novel Real-Time Error Adjustment Method With Considering Four Factors for Correcting Hourly Multi-Satellite Precipitation Estimates. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	2
283	Global and Regional Evaluation of the CERES Edition-4A Surface Solar Radiation and Its Uncertainty Quantification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2971-2985.	2.3	2
284	Hyperspectral Image Classification Based on CNN with Spectral-Spatial features. , 2021, , .		2
285	Ozonation precipitation for iron removal in zinc hydrometallurgy. Canadian Metallurgical Quarterly, 2023, 62, 99-106.	0.4	2
286	Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data. Earth System Science Data, 2022, 14, 2007-2019.	3.7	2
287	Vegetation dynamics and their relationships with climatic factors in the "Golden Triangle―region. Environmental Science and Pollution Research, 2022, 29, 73029-73042.	2.7	2
288	Segmentation of high resolution remote sensing image based on hierarchically multiscale		1

object-oriented Markov random fields model. , 2011, , .

#	Article	IF	CITATIONS
289	Improving land surface energy and water fluxes simulation over the Tibetan Plateau with using a land data assimilation system. , 2011, , .		1
290	The study of spatio-temporal variation of impervious surfaces for Dianci Basin using TM imagery from 2002 to 2009. , 2013, , .		1
291	An energy efficient hybrid transmission scheme for wireless VoD service under QoS constraints. , 2014, , .		1
292	Development of passive microwave retrieval algorithm for estimation of surface soil temperature from AMSR-E data. , 2016, , .		1
293	A surface soil temperature retrieval algorithm based on AMSR-E multi-frequency brightness temperatures. International Journal of Remote Sensing, 2017, 38, 6735-6754.	1.3	1
294	Comparison of the Winter Precipitation Products Over the Tibetan Plateau. , 2019, , .		1
295	Representing the Heat-to-Moisture Transport Efficiency in Stable Conditions: An Extension of Two Different Approaches. Asia-Pacific Journal of Atmospheric Sciences, 2020, 56, 603-611.	1.3	1
296	Estimating canopy surface height of wheat and corn crops in reclaimed cropland using multispectral images from a small unmanned aircraft system. Journal of Applied Remote Sensing, 2021, 15, .	0.6	1
297	Improving Land Surface Temperature Simulation of NOAH-MP on the Tibetan Plateau. , 2021, , .		1
298	Surface Process and Topographic Effect on the Weather Development in Kanto Region. , 2000, , 1.		0
299	Study on anisotropic buoyant turbulence model. Applied Mathematics and Mechanics (English) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.9	T /Oyerlock 10
300	The application of fuzzy technique to high slope economic analysis in hydropower project. , 2011, , .		0
301	The simulation of land use and land change in Erhai lake basin based on CA-Agent. , 2013, , .		0
302	Land Surface Process Study and Modeling in Drylands and High-Elevation Regions. , 2013, , 93-126.		0
303	A study of inversion modeling of water quality parameters in the dianchi lake using CCD1 data of HJ-1A satellite. , 2014, , .		0
304	Soil moisture and temperature measuring networks in the Tibetan Plateau and their applications in validation of microwave products. , 2016, , .		0
305	A Numerical Observability Analysis Method for Combined Electric-Gas Networks. , 2018, , .		0
306	Remote Sensing Image Registration with Multiple Features and Parameter Optimization. , 2018, , .		0

#	Article	IF	CITATIONS
307	Remote Sensing Image Registration Based on Fuzzy Shape Context Feature and Local Space Vector Similarity Constraint. , 2018, , .		ο
308	Landslide and Debris Flow Hazard Risk Analysis and Assessment in Yunnan Province. , 2018, , .		0
309	A Framework of Improving Satellite Precipitation Products by Utilizing Soil Moisture and Temperature Information. , 2019, , .		Ο
310	Soil Moisture Retrieval Only Using Smap L-Band Radar Observations. , 2020, , .		0
311	Design of a multi-scale query platform for China's PM2.5 Concentration. , 2020, , .		Ο
312	Spatial Clustering of Gastrointestinal Diseases in Middle-aged and Elderly Chinese Based on Cross-sectional Data. , 2020, , .		0