Mercedes Belén GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781656/publications.pdf Version: 2024-02-01

		50276	85541
204	7,134	46	71
papers	citations	h-index	g-index
215	215	215	6403
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents. Mini-Reviews in Medicinal Chemistry, 2005, 5, 409-424.	2.4	378
2	Pharmacological Properties of Indazole Derivatives: Recent Developments. Mini-Reviews in Medicinal Chemistry, 2005, 5, 869-878.	2.4	274
3	Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2007, 15, 3356-3367.	3.0	260
4	Novel Antitrypanosomal Agents Based on Palladium Nitrofurylthiosemicarbazone Complexes:Â DNA and Redox Metabolism as Potential Therapeutic Targetsâ€. Journal of Medicinal Chemistry, 2006, 49, 3322-3331.	6.4	157
5	1,2,5-OxadiazoleN-Oxide Derivatives and Related Compounds as Potential Antitrypanosomal Drugs:Â Structureâ^ Activity Relationships. Journal of Medicinal Chemistry, 1999, 42, 1941-1950.	6.4	136
6	Chemotherapy of Chagas Disease: Status and New Developments. Current Topics in Medicinal Chemistry, 2002, 2, 1187-1213.	2.1	129
7	In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. Bioorganic and Medicinal Chemistry, 2004, 12, 4885-4893.	3.0	118
8	Hypoxia-Selective Agents Derived from 2-Quinoxalinecarbonitrile 1,4-Di-N-oxides. 2. Journal of Medicinal Chemistry, 1995, 38, 4488-4494.	6.4	117
9	Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde) Tj ETQq1 1 0.7	843 134 5 gBT	- /O ve rlock 10
10	Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates. Bioorganic and Medicinal Chemistry, 2009, 17, 641-652.	3.0	94
11	Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved?. Biochemical Pharmacology, 2010, 79, 1736-1745.	4.4	94
12	Synthesis and antitrypanosomal evaluation of E-isomers of 5-nitro-2-furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives. Structure–activity relationships European Journal of Medicinal Chemistry, 2000, 35, 343-350.	5.5	92
13	Quinoxaline N , N ′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi . Structure–activity relationships. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3835-3839.	2.2	79
14	Indazole N-oxide derivatives as antiprotozoal agents: Synthesis, biological evaluation and mechanism of action studies. Bioorganic and Medicinal Chemistry, 2006, 14, 3467-3480.	3.0	78
15	New Vanadium(V) Complexes with Salicylaldehyde Semicarbazone Derivatives: Synthesis, Characterization, and in vitro Insulin-Mimetic Activityâ^' Crystal Structure of [VvO2(salicylaldehyde) Tj ETQq1	1 0.7 8.4 314	rg₿Ђ/Overlo
16	Improving anti-trypanosomal activity of 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives by complexation with vanadium. Bioorganic and Medicinal Chemistry, 2006, 14, 5503-5509.	3.0	76
17	Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. Journal of Inorganic Biochemistry, 2009, 103, 411-418.	3.5	75
18	Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. Journal of Inorganic Biochemistry, 2008, 102, 1033-1043.	3.5	74

#	Article	IF	CITATIONS
19	Novel Antiprotozoal Products: Imidazole and BenzimidazoleN-Oxide Derivatives and Related Compounds. Archiv Der Pharmazie, 2004, 337, 259-270.	4.1	68
20	2H-Benzimidazole 1,3-Dioxide Derivatives: A New Family of Water-Soluble Anti-Trypanosomatid Agentsâ€. Journal of Medicinal Chemistry, 2006, 49, 3215-3224.	6.4	68
21	Imidazolidines as new anti-Trypanosoma cruzi agents: Biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2008, 16, 2226-2234.	3.0	66
22	Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 3197-3207.	3.0	63
23	Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorganic and Medicinal Chemistry, 2012, 20, 2158-2171.	3.0	62
24	1,2,5-Oxadiazole N-oxide derivatives as potential anti-cancer agents: synthesis and biological evaluation. Part IV. European Journal of Medicinal Chemistry, 2001, 36, 771-782.	5.5	59
25	4-Nitroacetophenone-derived thiosemicarbazones and their copper(II) complexes with significant in vitro anti-trypanosomal activity. European Journal of Medicinal Chemistry, 2008, 43, 939-948.	5.5	59
26	Oxidovanadium(IV) and dioxidovanadium(V) complexes of tridentate salicylaldehyde semicarbazones: Searching for prospective antitrypanosomal agents. Journal of Inorganic Biochemistry, 2013, 127, 150-160.	3.5	59
27	Novel Cu(II) quinoxaline N1,N4-dioxide complexes as selective hypoxic cytotoxins. European Journal of Medicinal Chemistry, 2005, 40, 473-480.	5.5	58
28	New copper-based complexes with quinoxaline N1,N4-dioxide derivatives, potential antitumoral agents. Journal of Inorganic Biochemistry, 2008, 102, 119-126.	3.5	58
29	Risedronate metal complexes potentially active against Chagas disease. Journal of Inorganic Biochemistry, 2010, 104, 1252-1258.	3.5	58
30	Hybrid furoxanyl N-acylhydrazone derivatives as hits for the development of neglected diseases drug candidates. European Journal of Medicinal Chemistry, 2013, 59, 64-74.	5.5	57
31	New oxidovanadium(IV) N -acylhydrazone complexes: Promising antileishmanial and antitrypanosomal agents. European Journal of Medicinal Chemistry, 2013, 62, 20-27.	5.5	57
32	Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. European Journal of Medicinal Chemistry, 2004, 39, 421-431.	5.5	56
33	Potent in vitro anti-Trypanosoma cruzi activity of pyridine-2-thiol N-oxide metal complexes having an inhibitory effect on parasite-specific fumarate reductase. Journal of Biological Inorganic Chemistry, 2008, 13, 723-735.	2.6	56
34	A new series of heteroleptic oxidovanadium(iv) compounds with phenanthroline-derived co-ligands: selective Trypanosoma cruzi growth inhibitors. Dalton Transactions, 2013, 42, 11900.	3.3	56
35	Synthesis and Herbicidal Activity ofN-Oxide Derivatives. Journal of Agricultural and Food Chemistry, 2000, 48, 2995-3002.	5.2	54
36	Synthesis and characterization of new ruthenium complexes with active ligands against Chagas' disease. Inorganica Chimica Acta, 2003, 344, 85-94.	2.4	53

#	Article	IF	CITATIONS
37	Phenazine 5,10-Dioxide Derivatives as Hypoxic Selective Cytotoxins. Journal of Medicinal Chemistry, 2005, 48, 21-23.	6.4	52
38	Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorganic and Medicinal Chemistry, 2011, 19, 6818-6826.	3.0	50
39	Benzo[1,2-c]1,2,5-oxadiazole N-oxide derivatives as potential antitrypanosomal drugs. Part 3: Substituents-clustering methodology in the search for new active compounds. Bioorganic and Medicinal Chemistry, 2005, 13, 6324-6335.	3.0	49
40	Vibrational spectra of palladium 5-nitrofuryl thiosemicarbazone complexes: Experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 341-348.	3.9	49
41	Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead―Phase. Pharmaceuticals, 2010, 3, 810-838.	· 3.8	49
42	3-Trifluoromethylquinoxaline <i>N</i> , <i>N</i> ′-Dioxides as Anti-Trypanosomatid Agents. Identification of Optimal Anti- <i>T. cruzi</i> Agents and Mechanism of Action Studies. Journal of Medicinal Chemistry, 2011, 54, 3624-3636.	6.4	49
43	Design, Synthesis, and Pharmacological Evaluation of Novel Hybrid Compounds to Treat Sickle Cell Disease Symptoms. Part II: Furoxan Derivatives. Journal of Medicinal Chemistry, 2012, 55, 7583-7592.	6.4	49
44	Heteroarylnitrones as Drugs for Neurodegenerative Diseases: Synthesis, Neuroprotective Properties, and Free Radical Scavenger Properties. Journal of Medicinal Chemistry, 2008, 51, 6150-6159.	6.4	48
45	Quinoxaline derivatives: a patent review (2006 – present). Expert Opinion on Therapeutic Patents, 2012, 22, 1289-1302.	5.0	48
46	New trypanocidal hybrid compounds from the association of hydrazone moieties and benzofuroxan heterocycle. Bioorganic and Medicinal Chemistry, 2008, 16, 6995-7004.	3.0	47
47	Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. European Journal of Medicinal Chemistry, 2010, 45, 5767-5772.	5.5	47
48	ESR Spin Trapping Studies of Free Radicals Generated from Nitrofuran Derivative Analogues of Nifurtimox by Electrochemical and Trypanosoma cruzi Reduction. Free Radical Research, 2003, 37, 993-1001.	3.3	46
49	5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene. Bioorganic and Medicinal Chemistry, 2009, 17, 7500-7509.	3.0	46
50	Benzofuroxan and Furoxan. Chemistry and Biology. Topics in Heterocyclic Chemistry, 2007, , 265-308.	0.2	45
51	Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action. Bioorganic and Medicinal Chemistry, 2008, 16, 569-577.	3.0	45
52	Study of 5-nitroindazoles' anti-Trypanosoma cruzi mode of action: Electrochemical behaviour and ESR spectroscopic studies. European Journal of Medicinal Chemistry, 2009, 44, 1545-1553.	5.5	44
53	Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. European Journal of Medicinal Chemistry, 2013, 66, 324-334.	5.5	44
54	N-Oxides as Hypoxia Selective Cytotoxins. Mini-Reviews in Medicinal Chemistry, 2001, 1, 219-231.	2.4	43

#	Article	IF	CITATIONS
55	Second generation of 5-ethenylbenzofuroxan derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2007, 15, 2768-2781.	3.0	43
56	Furoxan-, alkylnitrate-derivatives and related compounds as anti-trypanosomatid agents: Mechanism of action studies. Bioorganic and Medicinal Chemistry, 2008, 16, 7900-7907.	3.0	42
57	Heterocyclic-2-carboxylic Acid (3-Cyano-1,4-di-N-oxidequinoxalin-2-yl)amide Derivatives as Hits for the Development of Neglected Disease Drugs. Molecules, 2009, 14, 2256-2272.	3.8	41
58	In vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles. European Journal of Medicinal Chemistry, 2009, 44, 1034-1040.	5.5	41
59	Effect of ruthenium complexation on trypanocidal activity of 5-nitrofuryl containing thiosemicarbazones. European Journal of Medicinal Chemistry, 2009, 44, 4937-4943.	5.5	41
60	New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: Biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2009, 17, 1437-1444.	3.0	41
61	New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and mechanism of action studies. Bioorganic and Medicinal Chemistry, 2009, 17, 8186-8196.	3.0	41
62	Anti-T. cruzi Agents: Our Experience in the Evaluation of More than Five Hundred Compounds. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1355-1383.	2.4	40
63	Synthesis and in vitro activity of limonene derivatives against Leishmania and Trypanosoma. European Journal of Medicinal Chemistry, 2010, 45, 1524-1528.	5.5	40
64	Optimization of Antitrypanosomatid Agents: Identification of Nonmutagenic Drug Candidates with in Vivo Activity. Journal of Medicinal Chemistry, 2014, 57, 3984-3999.	6.4	40
65	Identification of a New Amide-Containing Thiazole as a Drug Candidate for Treatment of Chagas' Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 1398-1404.	3.2	39
66	Potent and Selective Inhibitors of <i>Trypanosoma cruzi</i> Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity. ChemMedChem, 2016, 11, 1328-1338.	3.2	38
67	Benzo[1, 2-c]1, 2, 5-oxadiazole N-Oxide Derivatives as Potential Antitrypanosomal Drugs. Structure-Activity Relationships. Part II. Archiv Der Pharmazie, 2002, 335, 15-21.	4.1	37
68	A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. Journal of Coordination Chemistry, 2015, 68, 2923-2937.	2.2	37
69	Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new non-mutagenic agents that are active inÂvivo. European Journal of Medicinal Chemistry, 2015, 100, 246-256.	5.5	37
70	New potent 5-substituted benzofuroxans as inhibitors of Trypanosoma cruzi growth: Quantitative structure–activity relationship studies. Bioorganic and Medicinal Chemistry, 2005, 13, 6336-6346.	3.0	36
71	2-Acetylpyridine- and 2-benzoylpyridine-derived thiosemicarbazones and their antimony(III) complexes exhibit high anti-trypanosomal activity. Polyhedron, 2012, 31, 614-621.	2.2	36
72	Nitrofurylsemicarbazone Rhenium andÂRuthenium Complexes asÂAnti-trypanosomal Agents. European Journal of Medicinal Chemistry, 2006, 41, 1231-1239.	5.5	35

#	Article	IF	CITATIONS
73	In VivoAnti-Chagas Vinylthio-, Vinylsulfinyl-, and Vinylsulfonylbenzofuroxan Derivatives‡. Journal of Medicinal Chemistry, 2007, 50, 6004-6015.	6.4	35
74	Second generation of 2H-benzimidazole 1,3-dioxide derivatives as anti-trypanosomatid agents: Synthesis, biological evaluation, and mode of action studies. European Journal of Medicinal Chemistry, 2009, 44, 4426-4433.	5.5	35
75	Development of second generation amidinohydrazones, thio- and semicarbazones as Trypanosoma cruzi-inhibitors bearing benzofuroxan and benzimidazole 1,3-dioxide core scaffolds. MedChemComm, 2010, 1, 216.	3.4	34
76	Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites. PLoS ONE, 2012, 7, e35033.	2.5	34
77	Electrochemical and microsomal production of free radicals from 1,2,5-oxadiazole N-oxide as potential antiprotozoal drugs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 69-74.	3.9	33
78	Solubilization and Release Properties of Dendrimers. Evaluation as Prospective Drug Delivery Systems. Supramolecular Chemistry, 2006, 18, 633-643.	1.2	33
79	Anti-trypanosomatid benzofuroxans and deoxygenated analogues: Synthesis using polymer-supported triphenylphosphine, biological evaluation and mechanism of action studies. European Journal of Medicinal Chemistry, 2009, 44, 5055-5065.	5.5	33
80	Coordination of nitro-thiosemicarbazones to ruthenium(II) as a strategy for anti-trypanosomal activity improvement. European Journal of Medicinal Chemistry, 2010, 45, 2847-2853.	5.5	33
81	Naftifine-analogues as anti-Trypanosoma cruzi agents. European Journal of Medicinal Chemistry, 2010, 45, 2154-2164.	5.5	33
82	Ruthenium (II) nitrofurylsemicarbazone complexes: new DNA binding agents. European Journal of Medicinal Chemistry, 2004, 39, 377-382.	5.5	32
83	Bisphosphonate metal complexes as selective inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase. Dalton Transactions, 2012, 41, 6468.	3.3	32
84	Evaluating 5-Nitrofurans as Trypanocidal Agents. Antimicrobial Agents and Chemotherapy, 2013, 57, 1638-1647.	3.2	32
85	Design, synthesis, and biological characterization of potential antiatherogenic nitric oxide releasing tocopherol analogs. Bioorganic and Medicinal Chemistry, 2005, 13, 5787-5796.	3.0	31
86	Cytotoxic, mutagenic and genotoxic effects of new anti-T. cruzi 5-phenylethenylbenzofuroxans. Contribution of phase I metabolites on the mutagenicity induction. Toxicology Letters, 2009, 190, 140-149.	0.8	31
87	Expanding the family of heteroleptic oxidovanadium(IV) compounds with salicylaldehyde semicarbazones and polypyridyl ligands showing anti-Trypanosoma cruzi activity. Journal of Inorganic Biochemistry, 2015, 147, 116-125.	3.5	31
88	New hypoxiaâ€selective cytotoxines derived from quinoxaline 1,4â€dioxides. Journal of Heterocyclic Chemistry, 1995, 32, 1213-1217.	2.6	30
89	Molecular docking and molecular dynamics simulation studies of Trypanosoma cruzi triosephosphate isomerase inhibitors. Insights into the inhibition mechanism and selectivity. Journal of Molecular Graphics and Modelling, 2015, 58, 40-49.	2.4	30
90	Novel vanadyl complexes with quinoxaline N1,N4-dioxide derivatives as potent in vitro insulin-mimetic compounds. Journal of Inorganic Biochemistry, 2006, 100, 281-287.	3.5	29

#	Article	IF	CITATIONS
91	Novel Benzo[1,2-c]1,2,5-Oxadiazole N-Oxide Derivatives as Antichagasic Agents: Chemical and Biological Studies. Letters in Drug Design and Discovery, 2005, 2, 294-301.	0.7	28
92	Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. European Journal of Medicinal Chemistry, 2008, 43, 1737-1741.	5.5	28
93	Differential Enzymatic Reductions Governing the Differential Hypoxia-Selective Cytotoxicities of Phenazine 5,10-Dioxides. Chemical Research in Toxicology, 2008, 21, 1900-1906.	3.3	28
94	Design andÂevaluation of"3 + 1―mixed ligand oxorhenium andÂoxotechnetium complexes bearing aÂnitroaromatic group with potential application inÂnuclear medicine oncology. European Journal of Medicinal Chemistry, 2006, 41, 1144-1152.	5.5	27
95	Identification of chalcones as in vivo liver monofunctional phase II enzymes inducers. Bioorganic and Medicinal Chemistry, 2010, 18, 5391-5399.	3.0	27
96	Electrochemical and ESR study of 5-nitrofuryl-containing thiosemicarbazones antiprotozoal drugs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2933-2938.	3.9	26
97	Preparation and characterization of technetium and rhenium tricarbonyl complexes bearing the 4-nitrobenzyl moiety as potential bioreductive diagnostic radiopharmaceuticals. In vitro and in vivo studies. European Journal of Medicinal Chemistry, 2008, 43, 741-748.	5.5	26
98	Tautomerism and Reactivity in HeterocyclicN-Oxides. A Spectroscopic and Theoretical Study of BenzimidazoleN-Oxide Derivatives (N-Hydroxybenzimidazoles). Journal of Physical Chemistry A, 2004, 108, 11241-11248.	2.5	25
99	Antitumoral Effect of Phenazine <i>N</i> ⁵ , <i>N</i> ¹⁰ -Dioxide Derivatives on Caco-2 Cells. Chemical Research in Toxicology, 2008, 21, 1578-1585.	3.3	25
100	Cytotoxic palladium complexes of bioreductive quinoxaline N1,N4-dioxide prodrugs. Bioorganic and Medicinal Chemistry, 2009, 17, 1623-1629.	3.0	25
101	New heteroaryl nitrones with spin trap properties: Identification of a 4-furoxanyl derivative with excellent properties to be used in biological systems. Bioorganic and Medicinal Chemistry, 2010, 18, 795-802.	3.0	25
102	Reaction of isatin with alkylating agents with acidic methylenes. Tetrahedron Letters, 2012, 53, 2514-2517.	1.4	25
103	Multi-Anti-Parasitic Activity of Arylidene Ketones and Thiazolidene Hydrazines against Trypanosoma cruzi and Leishmania spp Molecules, 2017, 22, 709.	3.8	25
104	Quinoxaline 1,4-Dioxide and Phenazine 5,10-Dioxide. Chemistry and Biology. , 2007, , 179-211.		24
105	Second generation of α-tocopherol analogs-nitric oxide donors: Synthesis, physicochemical, and biological characterization. Bioorganic and Medicinal Chemistry, 2007, 15, 6262-6272.	3.0	24
106	Study of benzo[a]phenazine 7,12-dioxide as selective hypoxic cytotoxin-scaffold. Identification of aerobic-antitumoral activity through DNA fragmentation. Bioorganic and Medicinal Chemistry, 2010, 18, 4433-4440.	3.0	24
107	Structural modifications on the phenazine N,N′-dioxide-scaffold looking for new selective hypoxic cytotoxins. European Journal of Medicinal Chemistry, 2010, 45, 5362-5369.	5.5	24
108	New aryloxy-quinone derivatives as potential anti-Chagasic agents: synthesis, trypanosomicidal activity, electrochemical properties, pharmacophore elucidation and 3D-QSAR analysis. RSC Advances, 2015, 5, 65153-65166.	3.6	24

#	Article	IF	CITATIONS
109	ESR AND SPIN TRAPPING STUDIES OF TWO NEW POTENTIAL NTITRYPANOSOMAL DRUGS. Journal of the Chilean Chemical Society, 2003, 48, .	1.2	24
110	Cytotoxicity of furoxans: quantitative structure-activity relationships study. Il Farmaco, 2004, 59, 405-412.	0.9	23
111	New potent 5-nitrofuryl derivatives asÂinhibitors ofÂTrypanosomaÂcruzi growth. 3D-QSAR (CoMFA) studies. European Journal of Medicinal Chemistry, 2006, 41, 457-466.	5.5	23
112	6-Methylnitroarachidonate: A novel esterified nitroalkene that potently inhibits platelet aggregation and exerts cGMP-mediated vascular relaxation. Free Radical Biology and Medicine, 2011, 50, 411-418.	2.9	23
113	Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach. PLoS Neglected Tropical Diseases, 2016, 10, e0004834.	3.0	23
114	Selective hypoxia-cytotoxins based on vanadyl complexes with 3-aminoquinoxaline-2-carbonitrile-N1,N4-dioxide derivatives. Journal of Inorganic Biochemistry, 2006, 100, 1358-1367.	3.5	22
115	Anti-T. cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4831-4835.	2.2	22
116	Evaluation of a new dendrimeric structure as prospective drugs carrier for intravenous administration of antichagasic active compounds. Journal of Physical Organic Chemistry, 2008, 21, 1079-1085.	1.9	21
117	Preparation of phenazine N5,N10-dioxides: Effects of benzofuroxan substituents in the outcome of their expansion reaction with phenolates. Journal of the Brazilian Chemical Society, 2005, 16, 1290-1296.	0.6	20
118	Arylethenylbenzofuroxan Derivatives as Drugs for Chagas Disease: Multigram Batch Synthesis using a Wittigâ^'Boden Process. Organic Process Research and Development, 2008, 12, 156-162.	2.7	20
119	In Vivo Anti-Trypanosoma cruzi Activity of Hydro-Ethanolic Extract and Isolated Active Principles from Aristeguietia glutinosa and Mechanism of Action Studies. Molecules, 2014, 19, 8488-8502.	3.8	20
120	1, 2, 4-TriazineN-oxide Derivatives: Studies as Potential Hypoxic Cytotoxins. Part III. Archiv Der Pharmazie, 2004, 337, 271-280.	4.1	19
121	Modeling anti-Trypanosoma cruzi Activity of N-Oxide Containing Heterocycles. Journal of Chemical Information and Modeling, 2008, 48, 213-219.	5.4	19
122	New chemotypes as <i>Trypanosoma cruzi</i> triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 198-204.	5.2	19
123	ESR and electrochemical study of 5-nitroindazole derivatives with antiprotozoal activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 36-42.	3.9	18
124	In vivo studies of 5-arylethenylbenzofuroxans in acute murine models of Chagas' disease. European Journal of Medicinal Chemistry, 2008, 43, 2229-2237.	5.5	18
125	Design, synthesis and inÂvitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives. European Journal of Medicinal Chemistry, 2015, 100, 24-33.	5.5	18
126	In vivo phase II-enzymes inducers, as potential chemopreventive agents, based on the chalcone and furoxan skeletons. Bioorganic and Medicinal Chemistry, 2016, 24, 1665-1674.	3.0	18

#	Article	IF	CITATIONS
127	Mutagenicity of N-oxide Containing Heterocycles and Related Compounds: Experimental and Theoretical Studies. Current Topics in Medicinal Chemistry, 2014, 14, 1374-1387.	2.1	18
128	Synthesis and Biological Evaluation of 1,2,5-OxadiazoleN-Oxide Derivatives as Potential Hypoxic Cytotoxins and DNA-Binders. Archiv Der Pharmazie, 2000, 333, 387-393.	4.1	17
129	Chemo-selective hydrolysis of the iminic moiety in salicylaldehyde semicarbazone promoted by ruthenium. Inorganica Chimica Acta, 2005, 358, 3065-3074.	2.4	17
130	Comparative spectroscopic and electrochemical study of nitroindazoles: 3-Alcoxy, 3-hydroxy and 3-oxo derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 557-563.	3.9	17
131	Pd(thiosaccharinato)2·H2O, the first thiosaccharinato complex of a platinum-group metal. Journal of Coordination Chemistry, 2006, 59, 101-106.	2.2	16
132	Potent 5-nitrofuran derivatives inhibitors of Trypanosoma cruzi growth: Electrochemical, spectroscopic and biological studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 312-319.	3.9	16
133	Activity on Trypanosoma cruzi, erythrocytes lysis and biologically relevant physicochemical properties of Pd(II) and Pt(II) complexes of thiosemicarbazones derived from 1-indanones. Journal of Inorganic Biochemistry, 2012, 117, 270-276.	3.5	16
134	Synthesis and biological evaluation of quinoxaline di- N -oxide derivatives with in vitro trypanocidal activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 903-906.	2.2	16
135	1, 2, 4-TriazineN-oxide Derivatives: Studies as Potential Hypoxic Cytotoxins. Part II Archiv Der Pharmazie, 2004, 337, 247-258.	4.1	15
136	Development of Hypoxia Selective Cytotoxins for Cancer Treatment: An Update. Medicinal Chemistry, 2006, 2, 315-327.	1.5	15
137	Phenazine N,N′-dioxide scaffold as selective hypoxic cytotoxin pharmacophore. Structural modifications looking for further DNA topoisomerase II-inhibition activity. MedChemComm, 2013, 4, 595.	3.4	14
138	Trypanosoma cruzi chemical proteomics using immobilized benznidazole. Experimental Parasitology, 2014, 140, 33-38.	1.2	14
139	Novel compounds to combat trypanosomatid infections: a medicinal chemical perspective. Expert Opinion on Therapeutic Patents, 2011, 21, 699-715.	5.0	13
140	1,2,4-thiadiazol-5(4 <i>H</i>)-ones: a new class of selective inhibitors of <i>Trypanosoma cruzi</i> triosephosphate isomerase. Study of the mechanism of inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 981-989.	5.2	13
141	Synthesis and biological characterization of new aryloxyindole-4,9-diones as potent trypanosomicidal agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3919-3922.	2.2	13
142	Novel and Selective Rhipicephalus microplus Triosephosphate Isomerase Inhibitors with Acaricidal Activity. Veterinary Sciences, 2018, 5, 74.	1.7	13
143	Preparation of Enamines from the Condensation of Glycine Esters with Nitro-Heterocyclic Aldehydes. Heterocycles, 1997, 45, 2023.	0.7	12
144	Synthesis and Characterization of Thiol Containing Furoxan Derivatives as Coligands for the Preparation of Potential Bioreductive Radiopharmaceuticals. Archiv Der Pharmazie, 2006, 339, 59-66.	4.1	12

#	Article	IF	CITATIONS
145	Antiparasitic prodrug nifurtimox: revisiting its activation mechanism. Future Microbiology, 2011, 6, 847-850.	2.0	12
146	Novel Phenazine 5,10-Dioxides Release [•] OH in Simulated Hypoxia and Induce Reduction of Tumour Volume <i>In Vivo</i> . ISRN Pharmacology, 2011, 2011, 1-11.	1.6	12
147	Amidines bearing benzofuroxan or benzimidazole 1,3-dioxide core scaffolds as Trypanosoma cruzi-inhibitors: structural basis for their interactions with cruzipain. MedChemComm, 2012, 3, 90-101.	3.4	12
148	Searching phase II enzymes inducers, from Michael acceptor-[1,2]dithiolethione hybrids, as cancer chemopreventive agents. Future Medicinal Chemistry, 2015, 7, 857-871.	2.3	12
149	Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment. Memorias Do Instituto Oswaldo Cruz, 2018, 113, 153-160.	1.6	12
150	Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N, N′-dioxide derivative with antitumor activity. Heliyon, 2019, 5, e01528.	3.2	12
151	New aryloxyâ€quinone derivatives with promising activity on <i>Trypanosoma cruzi</i> . Archiv Der Pharmazie, 2020, 353, e1900213.	4.1	12
152	Mass spectrometry of 1,2,5-oxadiazole N-oxide derivatives: use of deuterated analogues in fragmentation pattern studies. Journal of the Brazilian Chemical Society, 2004, 15, 232-240.	0.6	11
153	Relationship Between Physicochemical Properties and Herbicidal Activity of 1,2,5-Oxadiazole N-Oxide Derivatives. Molecules, 2005, 10, 1197-1208.	3.8	11
154	3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies. Molecules, 2015, 20, 14595-14610.	3.8	11
155	In vitro and in silico evaluations of new aryloxy-1,4-naphthoquinones as anti-Trypanosoma cruzi agents. Medicinal Chemistry Research, 2020, 29, 665-674.	2.4	11
156	One pot synthesis of benzyltriphenylphosphonium acetates from the corresponding activated benzylic alcohols. Arkivoc, 2006, 2006, 128-136.	0.5	11
157	Interaction energies of nitrofurans with trypanothione reductase and glutathione reductase studied by molecular docking. Computational and Theoretical Chemistry, 2007, 818, 7-22.	1.5	10
158	5-Nitro-2-furyl derivative actives against Trypanosoma cruzi: Preliminary in vivo studies. European Journal of Medicinal Chemistry, 2009, 44, 3909-3914.	5.5	10
159	Genetic toxicology and preliminary <i>in vivo</i> studies of nitric oxide donor tocopherol analogs as potential new class of antiatherogenic agents. Drug and Chemical Toxicology, 2011, 34, 285-293.	2.3	10
160	Polypharmacology in the Treatment of Chagas Disease. Current Medicinal Chemistry, 2019, 26, 4476-4489.	2.4	10
161	Convenient Route to Primary (Z)-Allyl Amines and Homologs. Synthetic Communications, 2008, 39, 29-47.	2.1	9
162	Study of <i>Trypanosoma cruzi</i> epimastigote cell death by NMR-visible mobile lipid analysis. Parasitology, 2012, 139, 506-515.	1.5	9

#	Article	IF	CITATIONS
163	Initial studies on mechanism of action and cell death of active <i>N-</i> oxide-containing heterocycles in <i>Trypanosoma cruzi</i> epimastigotes <i>in vitro</i> . Parasitology, 2014, 141, 682-696.	1.5	9
164	Synthesis and in vivo proof of concept of a BODIPY-based fluorescent probe as a tracer for biodistribution studies of a new anti-Chagas agent. RSC Advances, 2017, 7, 7983-7989.	3.6	9
165	Novel Imidazo[4,5-c][1,2,6]thiadiazine 2,2-dioxides as antiproliferative trypanosoma cruzi drugs: Computational screening from neural network, synthesis and inÂvivo biological properties. European Journal of Medicinal Chemistry, 2017, 136, 223-234.	5.5	9
166	Development, validation and application of a GC–MS method for the simultaneous detection and quantification of neutral lipid species in Trypanosoma cruzi. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 225-232.	2.3	9
167	Structure of indazole N1-oxide derivatives studied by X-ray, theoretical methods, 1H, 13C, 15N NMR and EI/MS. Journal of Molecular Structure, 2007, 871, 98-107.	3.6	8
168	Development of a HPLC method for the determination of antichagasic phenylethenylbenzofuroxans and its major synthetic secondary products in the chemical production processes. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 88-94.	2.8	8
169	Effect of complexation of 3-aminoquinoxaline-2-carbonitrile 1,4-dioxides with palladium and copper on their anti-T. cruzi activity. Medicinal Chemistry Research, 2012, 21, 1439-1444.	2.4	8
170	Identification of novel benzimidazole derivatives as anti- <i>Trypanosoma cruzi</i> agents: solid-phase synthesis, structure–activity relationships and molecular docking studies. Future Medicinal Chemistry, 2013, 5, 1719-1732.	2.3	8
171	Arylnitroalkenes as scavengers of macrophage-generated oxidants. European Journal of Medicinal Chemistry, 2014, 74, 31-40.	5.5	8
172	Evaluation of different PAMAM dendrimers as molecular vehicle of 1,2,4-triazine N-oxide derivative with potential antitumor activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 79, 65-73.	1.6	8
173	New hybrid bromopyridine-chalcones as in vivo phase II enzyme inducers: potential chemopreventive agents. MedChemComm, 2016, 7, 2395-2409.	3.4	8
174	Chemosensitizer effect of cisplatin-treated bladder cancer cells by phenazine-5,10-dioxides. Environmental Toxicology and Pharmacology, 2019, 69, 9-15.	4.0	8
175	2-Benzyl-2-methyl-2H-benzimidazole 1,3-dioxide derivatives: Spectroscopic and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 540-549.	3.9	7
176	2D―and 3Dâ€Quantitative Structureâ€Activity Relationship Studies for a Series of Phenazine <i>N</i> , <i>N</i> 'â€Dioxide as Antitumour Agents. Chemical Biology and Drug Design, 2011, 78, 960-968.	3.2	7
177	A serendipitous one-step conversion of 3H-1,2-dithiole-3-thione to (E)-3-[1-(alkylthio)alkylidene]-3H-1,2-dithiole: an experimental and theoretical study. Molecular Diversity, 2014, 18, 285-294.	3.9	7
178	Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans. BMC Pharmacology & Toxicology, 2019, 20, 76.	2.4	7
179	Targets for Anti-T. cruzi Drugs in the Post-Genomic Era. Current Enzyme Inhibition, 2010, 6, 195-210.	0.4	7
180	Bioactive-guided identification of labdane diterpenoids from aerial parts of Aristeguietia glutinosa as anti-Trypanosoma cruzi agents. Natural Product Communications, 2012, 7, 1139-42.	0.5	7

#	Article	IF	CITATIONS
181	Characterization of [ReO(Tetramethylthiourea)4](PF6)3 in Solution: Electrochemical, NMR and Ligand Substitution Studies. Journal of Coordination Chemistry, 2002, 55, 1441-1453.	2.2	5
182	Theoretical study on 5-nitrofuryl thiosemicarbazone radicals electronic properties. Computational and Theoretical Chemistry, 2006, 770, 125-129.	1.5	5
183	Coordination of 3-aminoquinoxaline-2-carbonitrile 1,4-dioxides to antimony(III) as a strategy for anti-Trypanosoma cruzi activity improvement. Medicinal Chemistry Research, 2012, 21, 4120-4128.	2.4	5
184	Selective Hypoxiaâ€Cytotoxin 7â€Fluoroâ€2â€Aminophenazine 5,10â€Dioxide: Toward "Candidateâ€ŧoâ€E the Drugâ€Development Pipeline. ChemistrySelect, 2019, 4, 9396-9402.)rug―Sta 1.5	ge in
185	Structural relationships in the solid state of the anti-chagas agent (E)-phenylethenylbenzofuroxan. Molecular Diversity, 2010, 14, 643-652.	3.9	4
186	Biotransformation of Phenazine 5,10-Dioxides under Hypoxic Conditions as an Example of Activation of Anticancer Prodrug: An Interdisciplinary Experiment for Biochemistry or Organic Chemistry. Journal of Chemical Education, 2013, 90, 1388-1391.	2.3	4
187	New hits as phase II enzymes inducers from a focused library with heteroatom–heteroatom and Michael-acceptor motives. Future Science OA, 2015, 1, FSO20.	1.9	4
188	3-(Benzyloxy)-1-(5-[¹⁸ F]fluoropentyl)-5-nitro-1 <i>H</i> -indazole: a PET radiotracer to measure acetylcholinesterase in brain. Future Medicinal Chemistry, 2017, 9, 983-994.	2.3	4
189	Interaction studies between human $\hat{l}\pm$ -tocopherol transfer protein and nitric oxide donor tocopherol analogues with LDL-protective activity. Bioorganic and Medicinal Chemistry, 2009, 17, 8143-8148.	3.0	3
190	Inhibition of LDL oxidation and inflammasome assembly by nitroaliphatic derivatives. Potential use as anti-inflammatory and anti-atherogenic agents. European Journal of Medicinal Chemistry, 2018, 159, 178-186.	5.5	3
191	Bioactive-guided Identification of Labdane Diterpenoids from Aerial Parts of <i>Aristeguietia glutinosa</i> as anti- <i>Trypanosoma cruzi</i> agents. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
192	Preparation and Biological Evaluation of ^{99m} Tc-Labelled Phenazine Dioxides as Potential Tracers for Hypoxia Imaging. Current Radiopharmaceuticals, 2015, 8, 56-61.	0.8	2
193	Slowed Development of Natural Products for Chagas Disease, how to Move Forward?. , 2018, , .		2
194	Identification and characterization of human interferon alpha inhibitors through a WISH cell line-based reporter gene assay. Bioorganic Chemistry, 2020, 94, 103372.	4.1	2
195	Development and Evaluation of 2-Amino-7-Fluorophenazine 5,10-Dioxide Polymeric Micelles as Antitumoral Agents for 4T1 Breast Cancer. Polymers, 2022, 14, 71.	4.5	2
196	Artificial Neural Networks Based on CODES Descriptors in Pharmacology: Identification of Novel Trypanocidal Drugs against Chagas Disease. Current Computer-Aided Drug Design, 2013, 9, 130-140.	1.2	1
197	Analgesic and Anti-Inflammatory Properties of Arylnitroalkenes. Inflammation and Allergy: Drug Targets, 2015, 14, 19-28.	1.8	1
198	Identification of N-Oxide-Containing Aromatic Heterocycles as Pharmacophores for Rumen Fermentation Modifiers. Metabolites, 2019, 9, 62.	2.9	1

#	Article	IF	CITATIONS
199	Cytotoxicity of Furoxans: Quantitative Structure—Activity Relationships Study ChemInform, 2004, 35, no.	0.0	0
200	Novel Antiprotozoal Products: Imidazole and Benzimidazole N-Oxide Derivatives and Related Compounds ChemInform, 2004, 35, no.	0.0	0
201	1,2,4-Triazine N-Oxide Derivatives: Studies as Potential Hypoxic Cytotoxins. Part 2 ChemInform, 2004, 35, no.	0.0	0
202	1,2,4-Triazine N-Oxide Derivatives: Studies as Potential Hypoxic Cytotoxins. Part 3 ChemInform, 2004, 35, no.	0.0	0
203	Design, Synthesis and Biological Evaluation of New Potent 5-Nitrofuryl Derivatives as anti-Trypanosoma cruzi Agents. Studies of Trypanothione Binding Site of Trypanothione Reductase as Target for Rational Design ChemInform, 2004, 35, no.	0.0	0
204	New Synthetic Approach for the Preparation of Imidazole N3-Oxides ChemInform, 2005, 36, no.	0.0	0