
Xin Dong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/278155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AICHE Journal, 2022, 68, e17507.	3.6	6
2	Dissolving microneedle rollers for rapid transdermal drug delivery. Drug Delivery and Translational Research, 2022, 12, 459-471.	5.8	13
3	Advances in self-assembling of pH-sensitive polymers: A mini review on dissipative particle dynamics. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112202.	5.0	8
4	Some attempts to increase the amount of drug coated onto the microneedles. Journal of Drug Delivery Science and Technology, 2022, 67, 102986.	3.0	4
5	An update on microneedle-based systems for diabetes. Drug Delivery and Translational Research, 2022, 12, 2275-2286.	5.8	10
6	A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Delivery and Translational Research, 2022, 12, 2730-2739.	5.8	18
7	A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Materials Science and Engineering C, 2022, 133, 112620.	7.3	22
8	Microneedle-based technology for cell therapy: current status and future directions. Nanoscale Horizons, 2022, 7, 715-728.	8.0	22
9	Advances in porous microneedle systems for drug delivery and biomarker detection: A mini review. Journal of Drug Delivery Science and Technology, 2022, 74, 103518.	3.0	5
10	Conductive Microneedle Patch with Electricity-Triggered Drug Release Performance for Atopic Dermatitis Treatment. ACS Applied Materials & Interfaces, 2022, 14, 31645-31654.	8.0	29
11	Mechanical evaluation of polymer microneedles for transdermal drug delivery: In vitro and in vivo. Journal of Industrial and Engineering Chemistry, 2022, 114, 181-189.	5.8	4
12	Microneedle-assisted technology for minimally invasive medical sensing. Microchemical Journal, 2021, 162, 105830.	4.5	26
13	In vivo safety assessment, biodistribution and toxicology of polyvinyl alcohol microneedles with 160-day uninterruptedly applications in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160, 1-8.	4.3	24
14	Selfâ€Powered Controllable Transdermal Drug Delivery System. Advanced Functional Materials, 2021, 31, 2104092.	14.9	52
15	An Update on the Routes for the Delivery of Donepezil. Molecular Pharmaceutics, 2021, 18, 2482-2494.	4.6	13
16	Mesoscopic Simulation for the Effect of Cross-Linking Reactions on the Drug Diffusion Properties in Microneedles. Journal of Chemical Information and Modeling, 2021, 61, 4000-4010.	5.4	6
17	Stability and Diffusion Properties of Insulin in Dissolvable Microneedles: A Multiscale Simulation Study. Langmuir, 2021, 37, 9244-9252.	3.5	7
18	Improved imiquimod-induced psoriasis like dermatitis using microneedles in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 20-27.	4.3	18

#	Article	IF	CITATIONS
19	Safety evaluation of 3-month effects of microneedle patches prepared from hyaluronic acid in mice. Biochemical Engineering Journal, 2021, 176, 108157.	3.6	6
20	Optimization of dip-coating methods for the fabrication of coated microneedles for drug delivery. Journal of Drug Delivery Science and Technology, 2020, 55, 101464.	3.0	25
21	A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Science Advances, 2020, 6, eaba7260.	10.3	99
22	Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111260.	5.0	19
23	A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochimica Acta, 2020, 358, 136917.	5.2	53
24	How is a micelle formed from amphiphilic polymers in a dialysis process: Insight from mesoscopic studies. Chemical Physics Letters, 2020, 754, 137711.	2.6	17
25	Safety Assessment of Microneedle Technology for Transdermal Drug Delivery: A Review. Advanced Therapeutics, 2020, 3, 2000033.	3.2	17
26	Multiscale simulations of drug distributions in polymer dissolvable microneedles. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110844.	5.0	18
27	Experimental and theoretical studies of drug-polymer interactions to control the drug distributions in dissolving microneedles. Journal of Industrial and Engineering Chemistry, 2020, 84, 280-289.	5.8	10
28	Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review. Molecular Pharmaceutics, 2020, 17, 1778-1799.	4.6	50
29	Effect of polymer microneedle pre-treatment on drug distributions in the skin <i>inÂvivo</i> . Journal of Drug Targeting, 2020, 28, 811-817.	4.4	13
30	Codelivery of hydrophilic and hydrophobic drugs in a microneedle patch for the treatment of skin pigmentation. Journal of Industrial and Engineering Chemistry, 2020, 88, 241-250.	5.8	14
31	The maximum possible amount of drug in rapidly separating microneedles. Drug Delivery and Translational Research, 2019, 9, 1133-1142.	5.8	14
32	Kinetic stability studies of HBV vaccine in a microneedle patch. International Journal of Pharmaceutics, 2019, 567, 118489.	5.2	19
33	Safety Evaluation of Solid Polymer Microneedles in Human Volunteers at Different Application Sites. ACS Applied Bio Materials, 2019, 2, 5616-5625.	4.6	32
34	A Dissolvable Microneedle Formulation of <i>Bordetella pertussis</i> Subunit Vaccine: Translational Development and Immunological Evaluation in Mice. ACS Applied Bio Materials, 2019, 2, 5053-5061.	4.6	9
35	Self-implanted tiny needles as alternative to traditional parenteral administrations for controlled transdermal drug delivery. International Journal of Pharmaceutics, 2019, 556, 338-348.	5.2	27
36	<i>In vitro</i> and <i>in vivo</i> assessment of polymer microneedles for controlled transdermal drug delivery. Journal of Drug Targeting, 2018, 26, 720-729.	4.4	62

#	Article	IF	CITATIONS
37	Controlled Delivery of Insulin Using Rapidly Separating Microneedles Fabricated from Genipin rosslinked Gelatin. Macromolecular Rapid Communications, 2018, 39, e1800075.	3.9	53
38	Insulin delivery systems combined with microneedle technology. Advanced Drug Delivery Reviews, 2018, 127, 119-137.	13.7	197
39	Macromol. Rapid Commun. 20/2018. Macromolecular Rapid Communications, 2018, 39, 1870048.	3.9	0
40	Development of a BDDE-crosslinked hyaluronic acid based microneedles patch as a dermal filler for anti-ageing treatment. Journal of Industrial and Engineering Chemistry, 2018, 65, 363-369.	5.8	29
41	Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Delivery and Translational Research, 2018, 8, 1034-1042.	5.8	20
42	Hyaluronic acid modified MPEG- <i>b</i> -PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Delivery, 2018, 25, 1258-1265.	5.7	37
43	Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. Materials Science and Engineering C, 2018, 83, 143-147.	7.3	37
44	Fabrication of coated polymer microneedles for transdermal drug delivery. Journal of Controlled Release, 2017, 265, 14-21.	9.9	131
45	A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Advances, 2017, 7, 15408-15415.	3.6	98
46	Structural optimization of rapidly separating microneedles for efficient drug delivery. Journal of Industrial and Engineering Chemistry, 2017, 51, 178-184.	5.8	34
47	Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions. Colloids and Surfaces B: Biointerfaces, 2017, 151, 280-286.	5.0	20
48	Microneedles with Controlled Bubble Sizes and Drug Distributions for Efficient Transdermal Drug Delivery. Scientific Reports, 2016, 6, 38755.	3.3	48
49	A fabrication method of microneedle molds with controlled microstructures. Materials Science and Engineering C, 2016, 65, 135-142.	7.3	71
50	Compatibility studies between an amphiphilic pH-sensitive polymer and hydrophobic drug using multiscale simulations. RSC Advances, 2016, 6, 101323-101333.	3.6	16
51	Rapidly separating microneedles for transdermal drug delivery. Acta Biomaterialia, 2016, 41, 312-319.	8.3	91
52	Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2016, 142, 55-64.	5.0	30
53	Mesoscopic simulation studies on the formation mechanism of drug loaded polymeric micelles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 536-544.	5.0	20
54	Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 25592-25600.	8.0	41

#	Article	IF	CITATIONS
55	Drug Release from pH-Sensitive Polymeric Micelles with Different Drug Distributions: Insight from Coarse-Grained Simulations. ACS Applied Materials & Interfaces, 2014, 6, 17668-17678.	8.0	59
56	Dissipative Particle Dynamics Studies of Doxorubicin-Loaded Micelles Assembled from Four-Arm Star Triblock Polymers 4AS-PCL- <i>b</i> -PDEAEMA- <i>b</i> -PPEGMA and their pH-Release Mechanism. Journal of Physical Chemistry B, 2013, 117, 13688-13697.	2.6	67
57	pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl) Tj ETQq1 I	. 087384314	r gB T /Overl
58	Synthesis, characterization and pH-Responsive self-assembly behavior of amphiphilic multiarm star triblock copolymers based on PCL, PDEAEMA, and PEG. Macromolecular Research, 2013, 21, 1011-1020.	2.4	17
59	Amphiphilic copolymer brush with random pH-sensitive/hydrophobic structure: synthesis and self-assembled micelles for sustained drug delivery. Soft Matter, 2012, 8, 454-464.	2.7	78
60	Systematic Multiscale Method for Studying the Structure–Performance Relationship of Drug-Delivery Systems. Industrial & Engineering Chemistry Research, 2012, 51, 4719-4730.	3.7	26
61	Can drug molecules diffuse into the core of micelles?. Soft Matter, 2012, 8, 9989.	2.7	38
62	Solvent mediated microstructures and release behavior of insulin from pH-sensitive nanoparticles. Colloids and Surfaces B: Biointerfaces, 2012, 94, 206-212.	5.0	10
63	pH-Sensitive Micelles Self-Assembled from Amphiphilic Copolymer Brush for Delivery of Poorly Water-Soluble Drugs. Biomacromolecules, 2011, 12, 116-122.	5.4	110
64	Studies on pH-sensitive micellar structures for sustained drug delivery: Experiments and computer simulations. Journal of Controlled Release, 2011, 152, e26-e28.	9.9	2
65	Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery. Journal of Colloid and Interface Science, 2011, 363, 114-121.	9.4	42
66	Dissipative Particle Dynamics Studies on Microstructure of pH-Sensitive Micelles for Sustained Drug Delivery. Macromolecules, 2010, 43, 7839-7844.	4.8	100
67	Phase behavior study of paclitaxel loaded amphiphilic copolymer in two solvents by dissipative particle dynamics simulations. Chemical Physics Letters, 2009, 473, 336-342.	2.6	31