Christopher Conrad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85, 102-119.	11.1	219
2	Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sensing, 2010, 2, 1035-1056.	4.0	143
3	Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sensing, 2014, 6, 6472-6499.	4.0	139
4	Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 2019, 40, 6553-6595.	2.9	126
5	Grassland habitat mapping by intra-annual time series analysis – Comparison of RapidEye and TerraSAR-X satellite data. International Journal of Applied Earth Observation and Geoinformation, 2015, 34, 25-34.	2.8	114
6	Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications. Environmental Science & Technology, 2012, 46, 8529-8541.	10.0	112
7	Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. Remote Sensing of Environment, 2013, 129, 90-102.	11.0	105
8	Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data. Remote Sensing of Environment, 2009, 113, 1678-1690.	11.0	102
9	Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrigation and Drainage Systems, 2007, 21, 197-218.	0.5	99
10	Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling. Environmental Monitoring and Assessment, 2013, 185, 4775-4790.	2.7	95
11	Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. International Journal of Remote Sensing, 2011, 32, 8763-8778.	2.9	88
12	MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments, 2018, 153, 66-75.	2.4	82
13	TiSeG: A Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 3296-3308.	6.3	79
14	Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 2014, 103, 63-74.	7.7	76
15	Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, 2015, 62, 377-390.	3.7	72
16	Measuring rural settlement expansion in Uzbekistan using remote sensing to support spatial planning. Applied Geography, 2015, 62, 29-43.	3.7	69
17	Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108, 191-204.	11.1	63
18	Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sensing, 2020, 12, 2779.	4.0	63

#	Article	IF	CITATIONS
19	Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions. Remote Sensing of Environment, 2011, 115, 3264-3275.	11.0	62
20	Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing, 2013, 34, 3879-3902.	2.9	61
21	Analysis of Settlement Expansion and Urban Growth Modelling Using Geoinformation for Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria. Remote Sensing, 2016, 8, 220.	4.0	59
22	Analysis of uncertainty in multi-temporal object-based classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 91-106.	11.1	57
23	Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing, 2014, 6, 12752-12775.	4.0	48
24	Multi-Temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa. Remote Sensing, 2015, 7, 12076-12102.	4.0	48
25	Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin. Water Resources Management, 2011, 25, 2467-2485.	3.9	45
26	Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Global and Planetary Change, 2013, 110, 88-98.	3.5	45
27	Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Physics and Chemistry of the Earth, 2009, 34, 225-235.	2.9	41
28	Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use. Journal of Arid Environments, 2016, 124, 150-159.	2.4	38
29	Optimising Phenological Metrics Extraction for Different Crop Types in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing, 2017, 9, 254.	4.0	34
30	Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Computers and Electronics in Agriculture, 2015, 118, 380-389.	7.7	33
31	Suitability of satellite remote sensing data for yield estimation in northeast Germany. Precision Agriculture, 2022, 23, 52-82.	6.0	30
32	Interdisciplinary Geoâ€ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENOâ€NE). Vadose Zone Journal, 2018, 17, 1-25.	2.2	29
33	Land Use/Cover Response to Rainfall Variability: A Comparing Analysis between NDVI and EVI in the Southwest of Burkina Faso. Climate, 2015, 3, 63-77.	2.8	28
34	Standardized FAO-LCCS land cover mapping in heterogeneous tree savannas of West Africa. Journal of Arid Environments, 2010, 74, 1083-1091.	2.4	27
35	Remote sensing and hydrological measurement based irrigation performance assessments in the upper Amu Darya Delta, Central Asia. Physics and Chemistry of the Earth, 2013, 61-62, 52-62.	2.9	27
36	Spatial targeting of land rehabilitation: a relational analysis of cropland productivity decline in arid Uzbekistan. Erdkunde, 2013, 67, 167-181.	0.8	27

CHRISTOPHER CONRAD

#	Article	IF	CITATIONS
37	On the relationship between vegetation and climate in tropical and northern Africa. Theoretical and Applied Climatology, 2014, 115, 341-353.	2.8	26
38	Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sensing, 2017, 9, 839.	4.0	26
39	Evaluation of the CropSyst model for simulating the potential yield of cotton. Agronomy for Sustainable Development, 2008, 28, 345-354.	5.3	25
40	Cropping Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000–2012. Remote Sensing, 2016, 8, 630.	4.0	25
41	Derivation of leaf area index for grassland within alpine upland using multi-temporal RapidEye data. International Journal of Remote Sensing, 2013, 34, 8628-8652.	2.9	24
42	Assessing gaps in irrigated agricultural productivity through satellite earth observations—A case study of the Fergana Valley, Central Asia. International Journal of Applied Earth Observation and Geoinformation, 2017, 59, 118-134.	2.8	24
43	Modeling of Cotton Yields in the Amu Darya River Floodplains of Uzbekistan Integrating Multitemporal Remote Sensing and Minimum Field Data. Agronomy Journal, 2007, 99, 1317-1326.	1.8	23
44	Validation of the collection 5 MODIS FPAR product in a heterogeneous agricultural landscape in arid Uzbekistan using multitemporal RapidEye imagery. International Journal of Remote Sensing, 2012, 33, 6818-6837.	2.9	23
45	Object-based identification of vegetation cover decline in irrigated agro-ecosystems in Uzbekistan. Quaternary International, 2013, 311, 163-174.	1.5	23
46	Modelling the Gross Primary Productivity of West Africa with the Regional Biomass Model RBM+, using optimized 250 m MODIS FPAR and fractional vegetation cover information. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 177-194.	2.8	23
47	Remote sensing-based assessments of land use, soil and vegetation status, crop production and water use in irrigation systems of the Aral Sea Basin. A review. Water Security, 2020, 11, 100078.	2.5	23
48	A Comparison between Support Vector Machine and Water Cloud Model for Estimating Crop Leaf Area Index. Remote Sensing, 2021, 13, 1348.	4.0	23
49	Water Management in Khorezm: Current Situation and Options for Improvement (Hydrological) Tj ETQq1 1 0.78	4314 rgBT	/Qyerlock 1
50	Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series. Remote Sensing, 2012, 4, 3972-3994.	4.0	21
51	Classification of burn severity using Moderate Resolution Imaging Spectroradiometer (MODIS): A case study in the jarrah-marri forest of southwest Western Australia. Journal of Geophysical Research, 2007, 112, .	3.3	19
52	Numerical modelling and remote sensing based approaches for investigating groundwater dynamics under changing land-use and climate in the agricultural region of Pakistan. Journal of Hydrology, 2020, 581, 124408.	5.4	18
53	Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany. Remote Sensing, 2020, 12, 1819.	4.0	18
54	Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2. Remote Sensing, 2022, 14, 1493.	4.0	18

4

#	Article	IF	CITATIONS
55	Spatio-temporal supply–demand of surface water for agroforestry planning in saline landscape of the lower Amudarya Basin. Journal of Arid Environments, 2019, 162, 53-61.	2.4	15
56	Statistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem. Frontiers in Water, 2021, 3, .	2.3	15
57	Important Variables of a RapidEye Time Series for Modelling Biophysical Parameters of Winter Wheat. Photogrammetrie, Fernerkundung, Geoinformation, 2016, 2016, 285-299.	1.2	15
58	Adapting to water scarcity: constraints and opportunities for improving irrigation management in Khorezm, Uzbekistan. Water Science and Technology: Water Supply, 2013, 13, 337-348.	2.1	14
59	Mapping and assessing crop diversity in the irrigated Fergana Valley, Uzbekistan. Applied Geography, 2017, 86, 102-117.	3.7	14
60	Optimal parameters for delineating agricultural parcels from satellite images based on supervised Bayesian optimization. Computers and Electronics in Agriculture, 2020, 178, 105696.	7.7	14
61	Statistical derivation of fPAR and LAI for irrigated cotton and rice in arid Uzbekistan by combining multi-temporal RapidEye data and ground measurements. Proceedings of SPIE, 2010, , .	0.8	13
62	Understanding Hydrological Repartitioning and Shifts in Drought Regimes in Central and South-West Asia Using MODIS Derived Perpendicular Drought Index and TRMM Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 983-993.	4.9	13
63	Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 2021, 9, 116702-116719.	4.2	12
64	Quantifying water volumes of small lakes in the inner Aral Sea Basin, Central Asia, and their potential for reaching water and food security. Environmental Earth Sciences, 2016, 75, 1.	2.7	10
65	Inverse Parametrization of a Regional Groundwater Flow Model with the Aid of Modelling and GIS: Test and Application of Different Approaches. ISPRS International Journal of Geo-Information, 2018, 7, 22.	2.9	10
66	Cabbage whiteflies colonise <i>Brassica</i> vegetables primarily from distant, upwind source habitats. Entomologia Experimentalis Et Applicata, 2019, 167, 713-721.	1.4	10
67	Agro-Meteorological Trends of Recent Climate Development in Khorezm and Implications for Crop Production. , 2012, , 25-36.		10
68	Consequences of chemical pretreatments in particle size analysis for modelling wind erosion. Geoderma, 2021, 396, 115073.	5.1	9
69	A crop type dataset for consistent land cover classification in Central Asia. Scientific Data, 2020, 7, 250.	5.3	8
70	Unsupervised Parameterization for Optimal Segmentation of Agricultural Parcels from Satellite Images in Different Agricultural Landscapes. Remote Sensing, 2020, 12, 3096.	4.0	8
71	Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble. , 2012, , .		7
72	Potentials of RapidEye time series for improved classification of crop rotations in heterogeneous agricultural landscapes: experiences from irrigation systems in Central Asia. , 2011, , .		6

#	Article	IF	CITATIONS
73	Stepwise Automated Pixel-Based Generation of Time Series Using Ranked Data Quality Indicators. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 272-280.	4.9	5
74	Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87, 159-175.	1.1	5
75	Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region. Sustainability, 2020, 12, 9535.	3.2	5
76	The Impact of Phenological Developments on Interferometric and Polarimetric Crop Signatures Derived from Sentinel-1: Examples from the DEMMIN Study Site (Germany). Remote Sensing, 2021, 13, 2951.	4.0	5
77	Digital In Situ Data Collection in Earth Observation, Monitoring and Agriculture—Progress towards Digital Agriculture. Remote Sensing, 2022, 14, 393.	4.0	5
78	Dynamics of MODIS Time Series for Ecological Applications in Southern Africa. , 2007, , .		4
79	Einfluss der thematischen und rĤmlichen AuflĶsung auf die ļberwachte, fernerkundungsbasierte Feldfrucht-Klassifizierung Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 7-20.	1.2	4
80	Vergleich zweier statistischer Methoden zur Ableitung des Anteils absorbierter Photosynthese wirksamer Strahlung (FAPAR) für Baumwolle. Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 55-67.	1.2	4
81	Modelling End-of-Season Soil Salinity in Irrigated Agriculture Through Multi-temporal Optical Remote Sensing, Environmental Parameters, and In Situ Information. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, 86, 221-233.	1.1	4
82	Agricultural land use mapping in the sudanian savanna of West Africa: Current status and future possibilities. , 2012, , .		3
83	Object-based cropland degradation identification: a case study in Uzbekistan. , 2012, , .		3
84	Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification. PLoS ONE, 2015, 10, e0130079.	2.5	3
85	Integrating ground-based and remote sensing-based monitoring of near-surface soil moisture in a Mediterranean environment. , 2019, , .		3
86	Modeling seasonal actual evapotranspiration with remote sensing and GIS in Khorezm region, Uzbekistan. , 2004, , .		2
87	Development of a satellite-based multi-scale land use classification system for land and water management in Uzbekistan and Kazakhstan. Proceedings of SPIE, 2011, , .	0.8	2
88	Assessing irrigated cropland dynamics in central Asia between 2000 and 2011 based on MODIS time series. Proceedings of SPIE, 2012, , .	0.8	2
89	Crop classification at subfield level using RapidEye time series and graph theory algorithms. , 2012, , .		2

#	Article	IF	CITATIONS
91	3-D numerical modelling of groundwater flow for scenario-based analysis and management. Water S A, 2018, 44, .	0.4	1
92	3.6 Mapping marginal land in Khorezm using GIS and remote sensing techniques. , 2015, , 167-178.		1
93	MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B2, 171-175.	0.2	1
94	Land Cover Analysis on Sub-Continental Scale: FAO LCCS Standard with 250 Meter MODIS Satellite Observations in West Africa. , 2008, , .		0
95	A Multi-Scale Approch for Retreiving Proportional Cover of Life Forms. , 2008, , .		0
96	Mapping crop distribution in administrative districts of southwest Germany using multi-sensor remote sensing data. , 2010, , .		0
97	Relationships between high resolution RapidEye based fPAR and MODIS vegetation indices in a heterogeneous agricultural region. , 2011, , .		0
98	A re-examination of perpendicular drought indices over Central and Southwest Asia. Proceedings of SPIE, 2012, , .	0.8	0