
Munesh Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781463/publications.pdf Version: 2024-02-01

MUNESH KUMAD

#	Article	IF	CITATIONS
1	Medicinal plants in an urban environment: the medicinal flora of Banares Hindu University, Varanasi, Uttar Pradesh. Journal of Ethnobiology and Ethnomedicine, 2007, 3, 35.	1.1	132
2	Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance and Management, 2009, 4, 6.	1.4	120
3	TRADITIONAL KNOWLEDGE OF MEDICINAL PLANTS IN TRIBES OF TRIPURA IN NORTHEAST, INDIA. Tropical Journal of Obstetrics and Gynaecology, 2017, 14, 156-168.	0.3	78
4	Forest soil nutrient stocks along altitudinal range of Uttarakhand Himalayas: An aid to Nature Based Climate Solutions. Catena, 2021, 207, 105667.	2.2	75
5	Estimation of Risk to the Eco-Environment and Human Health of Using Heavy Metals in the Uttarakhand Himalaya, India. Applied Sciences (Switzerland), 2020, 10, 7078.	1.3	59
6	Fuelwood consumption pattern at different altitudes in rural areas of Garhwal Himalaya. Biomass and Bioenergy, 2009, 33, 1413-1418.	2.9	46
7	Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance and Management, 2011, 6, 15.	1.4	39
8	Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India. Journal of Ethnobiology and Ethnomedicine, 2011, 7, 32.	1.1	39
9	Biomass and soil carbon along altitudinal gradients in temperate Cedrus deodara forests in Central Himalaya, India: Implications for climate change mitigation. Ecological Indicators, 2020, 111, 106025.	2.6	33
10	Ethnobotanical Study of Herbaceous Flora along an Altitudinal Gradient in Bharmour Forest Division, District Chamba of Himachal Pradesh, India. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-7.	0.5	28
11	Assessment of land degradation and restoration in coal mines of central India: A time series analysis. Ecological Engineering, 2022, 175, 106493.	1.6	26
12	Species diversity of woody vegetation along altitudinal gradient of the Western Himalayas. Global Ecology and Conservation, 2020, 24, e01302.	1.0	25
13	Effect of fire on soil nutrients and under storey vegetation in Chir pine forest in Garhwal Himalaya, India. Acta Ecologica Sinica, 2013, 33, 59-63.	0.9	24
14	Carbon Storage of Single Tree and Mixed Tree Dominant Species Stands in a Reserve Forest—Case Study of the Eastern Sub-Himalayan Region of India. Land, 2021, 10, 435.	1.2	24
15	Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land, 2021, 10, 387.	1.2	23
16	Carbon stock potential in Pinus roxburghii forests of Indian Himalayan regions. Environment, Development and Sustainability, 2021, 23, 12463-12478.	2.7	22
17	Impact of Carbon Stocks of Anogeissus latifolia on Climate Change and Socioeconomic Development: a Case Study of Garhwal Himalaya, India. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	21
18	Assessment of Annual Shoot Biomass and Carbon Storage Potential of Grewia optiva: an Approach to Combat Climate Change in Garhwal Himalaya. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	20

Munesh Kumar

#	Article	IF	CITATIONS
19	Estimation of Biomass and Soil Carbon Stock in the Hydroelectric Catchment of India and its Implementation to Climate Change. Journal of Sustainable Forestry, 2020, , 1-16.	0.6	18
20	Regeneration status of a sub-tropical Anogeissus latifolia forest in Garhwal Himalaya, India. Journal of Forestry Research, 2010, 21, 439-444.	1.7	17
21	Wood specific gravity of some tree species in the Garhwal Himalayas, India. Forestry Studies in China, 2011, 13, 225-230.	0.4	15
22	Implementation of the Use of Ethnomedicinal Plants for Curing Diseases in the Indian Himalayas and Its Role in Sustainability of Livelihoods and Socioeconomic Development. International Journal of Environmental Research and Public Health, 2021, 18, 1509.	1.2	15
23	Influence of Altitude on Diversity and Distribution Pattern of Trees in Himalayan Temperate Forests of Churdhar Wildlife Sanctuary, India. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	15
24	Forest structure, diversity and regeneration potential along altitudinal gradient in Dhanaulti of Garhwal Himalaya. Forest Systems, 2016, 25, e058.	0.1	15
25	Soil organic carbon estimation along an altitudinal gradient of chir pine forests in the Garhwal Himalaya, India: A field inventory to remote sensing approach. Land Degradation and Development, 2022, 33, 3387-3400.	1.8	15
26	Contribution of Cedrus deodara forests for climate mitigation along altitudinal gradient in Garhwal Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	1.0	14
27	Carbon stock variation of Pinus roxburghii Sarg. Forest along altitudes of Garhwal Himalaya, India. Russian Journal of Ecology, 2013, 44, 131-136.	0.3	13
28	Above-And Below-Ground Biomass Production in <i>Pinus roxburghii</i> Forests along Altitudes in Garhwal Himalaya, India. Current Science, 2019, 116, 1506.	0.4	13
29	Biomass Production Assessment in a Protected Area of Dry Tropical forest Ecosystem of India: A Field to Satellite Observation Approach. Frontiers in Environmental Science, 2021, 9, .	1.5	13
30	Variation in carbon stock and soil properties in different Quercus leucotrichophora forests of Garhwal Himalaya. Catena, 2022, 213, 106210.	2.2	12
31	Above and below ground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas. Forestry Studies in China, 2012, 14, 205-209.	0.4	11
32	Carbon stock of trees along an elevational gradient in temperate forests of Kedarnath Wildlife Sanctuary. Forest Science and Practice, 2013, 15, 137-143.	0.2	11
33	Influence of altitude on the distribution pattern of flora in a protected area of Western Himalaya. Acta Ecologica Sinica, 2020, 40, 30-43.	0.9	8
34	Fuelwood consumption in two tribal villages of the Nanda Devi Biosphere Reserve of the Indian Himalaya and strategies for fuelwood sustainability. Environment, Development and Sustainability, 2011, 13, 727-741.	2.7	7
35	Carbon Storage Potential of a Waterlogged Agroforestry System of Tripura, India. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	7
36	Regeneration Potential of Forest Vegetation of Churdhar Wildlife Sanctuary of India: Implication for Forest Management. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	6

Munesh Kumar

#	Article	IF	CITATIONS
37	Effect of altitude on the mechanical strength of Grewia optiva fiber in Garhwal Himalaya, India. Journal of Natural Fibers, 0, , 1-10.	1.7	4
38	Litter production, decomposition and nutrient release of woody tree species in Dhanaulti region of temperate forest in Gahwal Himalaya. Eurasian Journal of Forest Science, 2016, 4, 17-30.	0.7	4
39	Yield Production and Energy Budget of Traditional Agricultural Crops in Garhwal Himalaya. Agricultural Sciences in China, 2011, 10, 78-85.	0.6	3
40	Carbon stock in submergence forest of Srinagar hydroelectric project, Uttarakhand, India. Forest Science and Technology, 2014, 10, 61-66.	0.3	3
41	Fuelwood and fodder consumption patterns among agroforestry-practicing smallholder farmers of the lower Himalayas, India. Environment, Development and Sustainability, 2022, 24, 5594-5613.	2.7	3
42	Editorial for Special Issue "Socio-Economic Impacts of Carbon Sequestration on Livelihoods and Future Climate― Land, 2022, 11, 51.	1.2	3
43	Crop Production and Carbon Sequestration Potential of Grewia oppositifolia-Based Traditional Agroforestry Systems in Indian Himalayan Region. Land, 2022, 11, 839.	1.2	3
44	Disentangling Forest Dynamics for Litter Biomass Production in a Biosphere Reserve in Central India. Frontiers in Environmental Science, 0, 10, .	1.5	3
45	Variation in specific gravity and carbon proportion of agroforestry tree species of Himalaya. Environmental Challenges, 2021, 4, 100156.	2.0	2
46	Carbon stock loss of Chir pine forest through tree felling in Lower Himalaya Environmental Risk Assessment and Remediation, 2017, 01, .	0.4	2
47	Forest structure, diversity and regeneration in unburnt and burnt Anogeissus latifolia forests in Garhwal Himalayas. Forestry Studies in China, 2012, 14, 268-275.	0.4	1
48	Carbon stock in influenced forest of Srinagar hydroelectric project, Uttarakhand, India. Forest Science and Technology, 2014, 10, 125-129.	0.3	1
49	Editorial: Greenhouse Gas Emissions and Terrestrial Ecosystems. Frontiers in Environmental Science, 2022, 10, .	1.5	1