
Ahmed A Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4537-4549.	2.6	113
2	Microstructure and texture evolution in a twinning-induced-plasticity steel during uniaxial tension. Acta Materialia, 2013, 61, 2671-2691.	3.8	88
3	Effect of annealing on the microstructure and mechanical properties of cold rolled Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel. Materials Science & Engineering A: Structural Materials Properties, Microstructure and Processing, 2011, 528, 3545-3555.	5:2.6	77
4	On the evolution and modelling of brass-type texture in cold-rolled twinning-induced plasticity steel. Acta Materialia, 2014, 70, 259-271.	3.8	66
5	On the evolution and modelling of lattice strains during the cyclic loading of TWIP steel. Acta Materialia, 2013, 61, 5247-5262.	3.8	40
6	On the first direct observation of de-twinning in a twinning-induced plasticity steel. Acta Materialia, 2018, 156, 172-182.	3.8	30
7	Microtexture analysis of cold-rolled and annealed twinning-induced plasticity steel. Scripta Materialia, 2011, 65, 560-563.	2.6	29
8	Recrystallisation in a cold drawn low cost beta titanium alloy during rapid resistance heating. Journal of Alloys and Compounds, 2014, 585, 245-259.	2.8	29
9	Nucleation, coarsening and deformation accommodation mechanisms of ε-martensite in a high manganese steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 506-519.	2.6	22
10	An <i>in-situ</i> neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading. Applied Physics Letters, 2015, 106, .	1.5	20
11	On the feasibility of twinning nucleation via extrinsic faulting in twinning-induced plasticity steel. Scripta Materialia, 2013, 68, 436-439.	2.6	19
12	A Transmission Kikuchi Diffraction Study of a Coldâ€Rolled and Annealed Fe–17Mn–2Si–3Al–1Ni–0.06 wt% Steel. Steel Research International, 2015, 86, 1204-1214.	^{,C} 1.0	18
13	Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 589, 66-75.	2.6	17
14	Evidencing extrinsic stacking faults in twinning-induced plasticity steel. Materials Characterization, 2017, 123, 275-281.	1.9	16
15	Effect of isochronal annealing on the microstructure, texture and mechanical properties of a cold-rolled high manganese steel. Materials Characterization, 2018, 144, 66-76.	1.9	15
16	EBSD Observations of Recrystallisation and Tensile Deformation in Twinning Induced Plasticity Steel. Transactions of the Indian Institute of Metals, 2013, 66, 621-629.	0.7	14
17	On the evolution and modelling of Cube texture during dynamic recrystallisation of Ni–30Fe–Nb–C model alloy. Journal of Alloys and Compounds, 2018, 748, 620-636.	2.8	13
18	Microstructure and micro-texture evolution during the dynamic recrystallisation of a Ni-30Fe-Nb-C model alloy. Journal of Alloys and Compounds, 2016, 689, 250-265.	2.8	12

Ahmed A Saleh

#	Article	IF	CITATIONS
19	A transmission Kikuchi diffraction study of cementite in a quenched and tempered steel. Materials Characterization, 2016, 114, 146-150.	1.9	12
20	Phase-specific properties in a low-alloyed TRIP steel investigated using correlative nanoindentation measurements and electron microscopy. Journal of Materials Science, 2020, 55, 2578-2587.	1.7	11
21	Observation of deformation twinning and martensitic transformation during nanoindentation of a transformation-induced plasticity steel. Scientific Reports, 2017, 7, 17397.	1.6	9
22	Transmission Kikuchi diffraction versus electron back-scattering diffraction: A case study on an electron transparent cross-section of TWIP steel. Micron, 2017, 103, 53-63.	1.1	8
23	On the feasibility of partial slip reversal and de-twinning during the cyclic loading of TWIP steel. Materials Letters, 2016, 182, 294-297.	1.3	7
24	Effect of Uniaxial Tension on the Microstructure and Texture of High Mn Steel. Advanced Engineering Materials, 2018, 20, 1800258.	1.6	6
25	A re-evaluation of "The micromechanics of twinning in aÂTWIP steel― Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 184-189.	2.6	5
26	Self onsistent Modeling of Texture Evolution in TWIP Steel During Uniaxial Tension. Steel Research International, 2014, 85, 1120-1127.	1.0	4
27	Correcting intensity loss errors in the absence of texture-free reference samples during pole figure measurement. Materials Characterization, 2016, 118, 425-430.	1.9	4
28	An in-situ electron backscattering diffraction and viscoplastic self-consistent study of OFHC copper subjected to uniaxial tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141184.	2.6	4
29	Experimental and Self-Consistent Modeling Study of De-twinning in a Twinning-Induced Plasticity Steel. Jom, 2019, 71, 1396-1403.	0.9	3
30	Evolution of Microstructure and Mechanical Properties during Annealing of Cold Rolled Fe-24Mn-3Al-2Si-1Ni-0.06C Twip Steel. Advanced Materials Research, 0, 409, 719-724.	0.3	2
31	Tetragonality of bcc Phases in a Transformation-Induced Plasticity Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5925-5929.	1.1	2
32	Texture Evolution during Recrystallisation of Cold Rolled TWIP Steel. Materials Science Forum, 0, 702-703, 647-650.	0.3	0
33	Self-Consistent Modelling of TWIP Steel during Uniaxial Tensile Loading. Materials Science Forum, 0, 783-786, 732-737.	0.3	0
34	Evolution of Microstructure During the In Situ Heating of 42ÂPct Cold-Rolled High Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 562-572.	1.1	0