Guofa Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2781213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	5.6	728
2	Next-Generation Multifunctional Electrochromic Devices. Accounts of Chemical Research, 2016, 49, 1469-1476.	7.6	516
3	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	10.2	391
4	Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nature Communications, 2019, 10, 2158.	5.8	308
5	Inkjet Printed Large Area Multifunctional Smart Windows. Advanced Energy Materials, 2017, 7, 1602598.	10.2	239
6	Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Science Advances, 2019, 5, eaaw7956.	4.7	213
7	Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquidâ€Metal Particles. Advanced Materials, 2018, 30, e1706157.	11.1	208
8	Ultra-large optical modulation of electrochromic porous WO ₃ film and the local monitoring of redox activity. Chemical Science, 2016, 7, 1373-1382.	3.7	198
9	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. Advanced Materials, 2016, 28, 4490-4496.	11.1	193
10	Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications. Advanced Functional Materials, 2016, 26, 2176-2184.	7.8	167
11	Inkjet-printed all solid-state electrochromic devices based on NiO/WO ₃ nanoparticle complementary electrodes. Nanoscale, 2016, 8, 348-357.	2.8	157
12	Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices. ACS Energy Letters, 2020, 5, 1159-1166.	8.8	126
13	Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 2017, 1, 1700074.	2.7	110
14	Direct Observation of Indium Conductive Filaments in Transparent, Flexible, and Transferable Resistive Switching Memory. ACS Nano, 2017, 11, 1712-1718.	7.3	83
15	Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory. ACS Applied Materials & Interfaces, 2016, 8, 27885-27891.	4.0	80
16	A Highâ€Performance Lithiumâ€Ion Capacitor Based on 2D Nanosheet Materials. Small, 2017, 13, 1602893.	5.2	70
17	Spray coated ultrathin films from aqueous tungsten molybdenum oxide nanoparticle ink for high contrast electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 33-38.	2.7	63
18	Tunable Intracrystal Cavity in Tungsten Bronze‣ike Bimetallic Oxides for Electrochromic Energy Storage. Advanced Energy Materials, 2022, 12, 2103106.	10.2	48

GUOFA CAI

#	Article	IF	CITATIONS
19	Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science and Technology of Advanced Materials, 2018, 19, 759-770.	2.8	44
20	Microstructured capacitive sensor with broad detection range and long-term stability for human activity detection. Npj Flexible Electronics, 2021, 5, .	5.1	42
21	A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states. Journal of Materials Chemistry C, 2017, 5, 6547-6554.	2.7	35
22	Growth of a porous NiCoO ₂ nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. Journal of Materials Chemistry C, 2021, 9, 14378-14387.	2.7	34
23	<i>Diphylleia grayi</i> -Inspired Stretchable Hydrochromics with Large Optical Modulation in the Visible–Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 37685-37693.	4.0	29
24	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	3.8	22
25	Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Research, 2023, 16, 5473-5479.	5.8	16
26	Conductive Silver Grid Electrode for Flexible and Transparent Memristor Applications. Advanced Electronic Materials, 2021, 7, 2000948.	2.6	11
27	Constructed Ag NW@Bi/Al core–shell nano-architectures for high-performance flexible and transparent energy storage device. Nanoscale, 2020, 12, 19308-19316.	2.8	5
28	Highly stable, stretchable, and versatile electrodes by coupling of NiCoS nanosheets with metallic networks for flexible electronics. Nanoscale, 2022, 14, 8172-8182.	2.8	5
29	Strain Sensors: Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Cross‣inks Hydrogels for Humanâ€Motion Detection (Adv. Sci. 2/2017). Advanced Science, 2017, 4, .	5.6	4
30	Supercapacitors: Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	10.2	2
31	Capacitors: A Highâ€Performance Lithiumâ€ion Capacitor Based on 2D Nanosheet Materials (Small 6/2017). Small, 2017, 13,	5.2	2
32	Electroluminescent Devices: Extremely Stretchable Electroluminescent Devices with Ionic Conductors (Adv. Mater. 22/2016). Advanced Materials, 2016, 28, 4489-4489.	11.1	1