Bohdan Kulyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/278066/publications.pdf

Version: 2024-02-01

51	1,542	24	39
papers	citations	h-index	g-index
51	51	51	1519
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (1988) Laser-Induced Graphene from Paper for Mechanical Sensing (1988) Laser-Induced Graphene from Paper for Mechanical Sensing (1988) Laser-Induced Graphene from Paper for Mechanical Sensing (1988) Laser-Induced Grap	8.0	115
2	Metal-induced efficient enhancement of nonlinear optical response in conjugated azo-based iminopyridine complexes. Organic Electronics, 2016, 36, 1-6.	2.6	98
3	Nonlinear refraction and absorption activity of dimethylaminostyryl substituted BODIPY dyes. RSC Advances, 2016, 6, 84854-84859.	3.6	87
4	Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films. Journal of Applied Physics, 2009, 106, .	2.5	84
5	Optimization and diagnostic of nonlinear optical features of π-conjugated benzodifuran-based derivatives. RSC Advances, 2016, 6, 14439-14447.	3.6	82
6	Optical properties of ZnO/PMMA nanocomposite films. Journal of Alloys and Compounds, 2010, 502, 24-27.	5 . 5	80
7	Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dyes and Pigments, 2017, 145, 256-262.	3.7	76
8	Influence of Ag, Cu dopants on the second and third harmonic response of ZnO films. Journal of Alloys and Compounds, 2009, 481, 819-825.	5.5	73
9	Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc. Journal of Applied Physics, 2007, 102, 113113.	2.5	60
10	A Review on the Applications of Graphene in Mechanical Transduction. Advanced Materials, 2022, 34, e2101326.	21.0	59
11	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	12.3	45
12	'Cold' crystallization in nanostructurized 80GeSe2-20Ga2Se3 glass. Nanoscale Research Letters, 2015, 10, 49.	5.7	43
13	Tuning the nonlinear optical properties of BODIPYs by functionalization with dimethylaminostyryl substituents. Dyes and Pigments, 2017, 137, 507-511.	3.7	40
14	Laserâ€Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Advanced Materials Technologies, 2022, 7, .	5.8	39
15	Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on \hat{l}_{\pm} -BBO and LiNbO3. Optics Communications, 2008, 281, 6107-6111.	2.1	34
16	Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by Spin-Coating and Spray Pyrolysis. Optik, 2017, 128, 8-13.	2.9	34
17	Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon, 2022, 197, 253-263.	10.3	32
18	UV irradiation induce NLO modulation in photochromic styrylquinoline-based polymers: Computational and experimental studies. Organic Electronics, 2019, 66, 175-182.	2.6	31

#	Article	IF	Citations
19	Spin-coated nickel doped cadmium sulfide thin films for third harmonic generation applications. Journal of Alloys and Compounds, 2017, 696, 1292-1297.	5.5	30
20	Surface modification by grafted sensitive polymer brushes: An ellipsometric study of their properties. Applied Surface Science, 2013, 276, 340-346.	6.1	29
21	Synthesis, spectral, optical properties and theoretical calculations on schiff bases ligands containing o-tolidine. Optical Materials, 2016, 56, 116-120.	3.6	29
22	Chemical structure versus second-order nonlinear optical response of the push–pull type pyrazoline-based chromophores. RSC Advances, 2017, 7, 9941-9947.	3.6	28
23	Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique. Optical Materials, 2016, 56, 40-44.	3.6	27
24	Spin-coated Tin-doped NiO thin films for third order nonlinear optical applications. Optik, 2017, 136, 237-243.	2.9	24
25	Optical SHG for ZnO films with different morphology stimulated by UV-laser thermotreatment. Journal of Physics: Conference Series, 2007, 79, 012001.	0.4	20
26	TTF based donor-pi-acceptor dyads synthesized for NLO applications. Dyes and Pigments, 2017, 138, 255-266.	3.7	20
27	Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diamond and Related Materials, 2022, 123, 108855.	3.9	20
28	Comparative Study on the Structural, Morphological, Linear and Nonlinear Optical Properties of CZTS Thin Films Prepared by Spin-Coating and Spray Pyrolysis. Materials Today: Proceedings, 2017, 4, 5146-5153.	1.8	19
29	Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties. Optical Materials, 2019, 94, 187-195.	3.6	19
30	Study of Second Harmonic Generation in KDP/Al ₂ O ₃ Crystalline Nanocomposite. Acta Physica Polonica A, 2018, 133, 856-859.	0.5	19
31	Characterization and investigation of NLO properties of electrodeposited polythiophenes. Journal of the European Optical Society-Rapid Publications, 0, 4, .	1.9	17
32	Optical absorption and photoluminescence properties of ZnO/PMMA nanocomposite films. Journal of Physics: Conference Series, 2011, 289, 012003.	0.4	16
33	Third harmonic generation in LiKB4O7 single crystal. Materials Chemistry and Physics, 2010, 120, 114-117.	4.0	15
34	Ellipsometric studies of optical properties of copper doped zinc oxide films on glass substrates. Journal of Alloys and Compounds, 2012, 518, 96-100.	5.5	13
35	Effect of Dopants and Surface Morphology on the Absorption Edge of ZnO Films DOPED with in, Al, and Ga. Journal of Applied Spectroscopy, 2015, 82, 153-156.	0.7	12
36	Electrochemical depositions of palladium on indium tin oxide-coated glass and their possible application in organic electronics technology. Micro and Nano Letters, 2011, 6, 592.	1.3	11

#	Article	IF	CITATIONS
37	Structural Properties and Temperature Behaviour of Optical Absorption Edge in Polycrystalline ZnO:X (Cu,Ag) Films. Acta Physica Polonica A, 2013, 123, 92.	0.5	11
38	Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Applied Surface Science, 2015, 347, 299-306.	6.1	10
39	Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal. Optical Materials, 2016, 56, 36-39.	3.6	9
40	Millimeter sized graphene domains through in situ oxidation/reduction treatment of the copper substrate. Carbon, 2020, 169, 403-415.	10.3	8
41	Nonlinear optical behavior of DNA-functionalized gold nanoparticles. Applied Nanoscience (Switzerland), 2019, 9, 703-708.	3.1	6
42	Electrophysical Characteristics of Near-Surface Layers in p-Si Crystals with Sputtered Al Films and Subjected to Elastic Deformation. Ukrainian Journal of Physics, 2013, 58, 742-747.	0.2	6
43	Radiation Effects in DMAAS:Cr Ferroelectric Crystal. Acta Physica Polonica A, 2003, 104, 571-580.	0.5	3
44	Spectroscopic Study of Radiation Effects in DMAAS:Cr Ferroelectrics. Ferroelectrics, 2005, 317, 7-13.	0.6	2
45	Functionalized Methacrylic Thiazolidinone Polymer for Optical Applications. , 2018, , .		2
46	Formation of Nanostructures on the VdW-Surface of CdI2 Crystals. Ukrainian Journal of Physics, 2013, 58, 490-496.	0.2	2
47	Electrochemical Growth and Physico-Chemical Characterization in Organic Medium of Nb2O5 Thin Films. , 2008, , .		1
48	Single-Walled Carbon Nanotubes: Structural and optical properties. , 2016, , .		1
49	Peculiarities of domain structure and the formation process of nano- and microcrystals on the surface of [NH2(CH3)2]Al0.8Cr0.2(SO4)2×6H2O single crystals. Journal of Physical Studies, 2018, 22, .	0.5	1
50	Effect of UV irradiation on nonlinear optical response of azo-based iminopyridine rhenium complexes. , 2017, , .		0
51	Nonlinear optical response of KDP/Al <inf>2</inf> O <inf>3</inf> crystalline nanocomposite., 2017,,.		0