List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2780508/publications.pdf Version: 2024-02-01

MADIO MÃOLIED

#	Article	IF	CITATIONS
1	The X chromosome and sex-specific effects in infectious disease susceptibility. Human Genomics, 2019, 13, 2.	1.4	271
2	Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis, 2010, 90, 71-83.	0.8	201
3	Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape. Human Genetics, 2010, 128, 145-153.	1.8	177
4	Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. Human Molecular Genetics, 2014, 23, 796-809.	1.4	162
5	An Unexpectedly Complex Architecture for Skin Pigmentation in Africans. Cell, 2017, 171, 1340-1353.e14.	13.5	134
6	Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunology and Medical Microbiology, 2010, 58, 3-26.	2.7	109
7	Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries. Genetics, 2016, 204, 303-314.	1.2	93
8	TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS ONE, 2015, 10, e0139711.	1.1	92
9	A Panel of Ancestry Informative Markers for the Complex Five-Way Admixed South African Coloured Population. PLoS ONE, 2013, 8, e82224.	1.1	74
10	Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infection, Genetics and Evolution, 2015, 34, 221-229.	1.0	69
11	Associations Between Human Leukocyte Antigen Class I Variants and the Mycobacterium tuberculosis Subtypes Causing Disease. Journal of Infectious Diseases, 2014, 209, 216-223.	1.9	59
12	Neutrophils: Innate Effectors of TB Resistance?. Frontiers in Immunology, 2018, 9, 2637.	2.2	59
13	The critical needs and challenges for genetic architecture studies in Africa. Current Opinion in Genetics and Development, 2018, 53, 113-120.	1.5	57
14	Evaluating the Accuracy of Imputation Methods in a Five-Way Admixed Population. Frontiers in Genetics, 2019, 10, 34.	1.1	53
15	Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis, 2009, 89, 189-194.	0.8	50
16	Determining Ancestry Proportions in Complex Admixture Scenarios in South Africa Using a Novel Proxy Ancestry Selection Method. PLoS ONE, 2013, 8, e73971.	1.1	42
17	Polymorphisms in MC3R promoter and CTSZ 3′UTR are associated with tuberculosis susceptibility. European Journal of Human Genetics, 2011, 19, 676-681.	1.4	38
18	Using multi-way admixture mapping to elucidate TB susceptibility in the South African Coloured population. BMC Genomics, 2014, 15, 1021.	1.2	36

#	Article	IF	CITATIONS
19	The role of ancestry in TB susceptibility of an admixed South African population. Tuberculosis, 2014, 94, 413-420.	0.8	32
20	Different Selected Mechanisms Attenuated the Inhibitory Interaction of KIR2DL1 with C2+ HLA-C in Two Indigenous Human Populations in Southern Africa. Journal of Immunology, 2018, 200, 2640-2655.	0.4	32
21	Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study. BMC Infectious Diseases, 2010, 10, 154.	1.3	29
22	Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Frontiers in Immunology, 2018, 9, 2219.	2.2	29
23	Putting RFMix and ADMIXTURE to the test in a complex admixed population. BMC Genetics, 2020, 21, 40.	2.7	29
24	A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array. Frontiers in Genetics, 2018, 9, 678.	1.1	28
25	A Functional Haplotype in the 3′Untranslated Region of <i>TNFRSF1B</i> Is Associated with Tuberculosis in Two African Populations. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 388-393.	2.5	27
26	Host susceptibility to tuberculosis: CARD15 polymorphisms in a South African population. Molecular and Cellular Probes, 2007, 21, 148-151.	0.9	24
27	An observational study identifying highly tuberculosis-exposed, HIV-1-positive but persistently TB, tuberculin and IGRA negative persons with M. tuberculosis specific antibodies in Cape Town, South Africa. EBioMedicine, 2020, 61, 103053.	2.7	22
28	Activating KIRs alter susceptibility to pulmonary tuberculosis in a South African population. Tuberculosis, 2015, 95, 817-821.	0.8	21
29	The complete genome sequence of the African buffalo (Syncerus caffer). BMC Genomics, 2016, 17, 1001.	1.2	21
30	Population structure and infectious disease risk in southern Africa. Molecular Genetics and Genomics, 2017, 292, 499-509.	1.0	21
31	Polymorphisms in the Pattern Recognition Receptor Mincle Gene (CLEC4E) and Association with Tuberculosis. Lung, 2016, 194, 763-767.	1.4	19
32	A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility. PLoS ONE, 2017, 12, e0174738.	1.1	19
33	Allelic variation in BTNL2 and susceptibility to tuberculosis in a South African population. Microbes and Infection, 2007, 9, 522-528.	1.0	17
34	The arms race between man and Mycobacterium tuberculosis: Time to regroup. Infection, Genetics and Evolution, 2018, 66, 361-375.	1.0	17
35	Rapid evolution of a skin-lightening allele in southern African KhoeSan. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13324-13329.	3.3	17
36	The role of human host genetics in tuberculosis resistance. Expert Review of Respiratory Medicine, 2017, 11, 721-737.	1.0	16

#	Article	IF	CITATIONS
37	Exome Sequencing Identifies a Novel MAP3K14 Mutation in Recessive Atypical Combined Immunodeficiency. Frontiers in Immunology, 2017, 8, 1624.	2.2	16
38	Investigating the Role of Gene-Gene Interactions in TB Susceptibility. PLoS ONE, 2015, 10, e0123970.	1.1	15
39	Primary immunodeficiency diseases in a tuberculosis endemic region: challenges and opportunities. Genes and Immunity, 2019, 20, 447-454.	2.2	14
40	Clinical Utility of Whole Exome Sequencing and Targeted Panels for the Identification of Inborn Errors of Immunity in a Resource-Constrained Setting. Frontiers in Immunology, 2021, 12, 665621.	2.2	14
41	Phenotype Definition for "Resisters―to Mycobacterium tuberculosis Infection in the Literature—A Review and Recommendations. Frontiers in Immunology, 2021, 12, 619988.	2.2	13
42	Human global and population-specific genetic susceptibility to Mycobacterium tuberculosis infection and disease. Current Opinion in Pulmonary Medicine, 2020, 26, 302-310.	1.2	11
43	High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Scientific Reports, 2021, 11, 4540.	1.6	11
44	TB Epidemiology and Human Genetics. Novartis Foundation Symposium, 0, , 17-41.	1.2	11
45	Human whole genome sequencing in South Africa. Scientific Reports, 2021, 11, 606.	1.6	10
46	A new tool for prioritization of sequence variants from whole exome sequencing data. Source Code for Biology and Medicine, 2016, 11, 10.	1.7	9
47	Exome sequencing identifies a novel TTC37 mutation in the first reported case of Trichohepatoenteric syndrome (THE-S) in South Africa. BMC Medical Genetics, 2017, 18, 26.	2.1	8
48	Autosomal Dominant IFN-γR1 Deficiency Presenting with both Atypical Mycobacteriosis and Tuberculosis in a BCG-Vaccinated South African Patient. Journal of Clinical Immunology, 2018, 38, 460-463.	2.0	8
49	Hyperphosphatasia with mental retardation syndrome type 4 in three unrelated South African patients. American Journal of Medical Genetics, Part A, 2020, 182, 2230-2235.	0.7	8
50	A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort. Genomics, 2021, 113, 1802-1815.	1.3	8
51	Prospective avenues for human population genomics and disease mapping in southern Africa. Molecular Genetics and Genomics, 2020, 295, 1079-1089.	1.0	7
52	A regulatory variant in the C1Q gene cluster is associated with tuberculosis susceptibility and C1qA plasma levels in a South African population. Immunogenetics, 2020, 72, 305-314.	1.2	7
53	Local Ancestry Adjusted Allelic Association Analysis Robustly Captures Tuberculosis Susceptibility Loci. Frontiers in Genetics, 2021, 12, 716558.	1.1	7
54	Characterizing epidemiological and genotypic features of <i>Mycobacterium bovis</i> infection in wild dogs (<i>Lycaon pictus</i>). Transboundary and Emerging Diseases, 2021, 68, 3433-3442.	1.3	6

#	Article	IF	CITATIONS
55	Inferring recombination patterns in African populations. Human Molecular Genetics, 2021, 30, R11-R16.	1.4	6
56	Shedding of <i>Mycobacterium bovis</i> in respiratory secretions of freeâ€ranging wild dogs () Tj ETQq0 0 0 rgBT Diseases, 2021, 68, 2581-2588.	Överlock 1.3	10 Tf 50 70 6
57	TB epidemiology and human genetics. Novartis Foundation Symposium, 2006, 279, 17-31; discussion 31-41, 216-9.	1.2	5
58	African Genetic Representation in the Context of SARS-CoV-2 Infection and COVID-19 Severity. Frontiers in Genetics, 2022, 13, .	1.1	5
59	Comparative Analysis of a Putative Tuberculosis-Susceptibility Gene, <i>MC3R</i> , and Pseudogene Sequences in Cattle, African Buffalo, Hyena, Rhinoceros and Other African Bovids and Ruminants. Cytogenetic and Genome Research, 2012, 136, 117-122.	0.6	4
60	Identification of a novel WAS mutation in a South African patient presenting with atypical Wiskott-Aldrich syndrome: a case report. BMC Medical Genetics, 2020, 21, 124.	2.1	4
61	Phenotypic and immune functional profiling of patients with suspected Mendelian Susceptibility to Mycobacterial Disease in South Africa. BMC Immunology, 2021, 22, 62.	0.9	4
62	<i>Mycobacterium tuberculosis</i> complex and human coadaptation: a two-way street complicating host susceptibility to TB. Human Molecular Genetics, 2021, 30, R146-R153.	1.4	3
63	Local ancestry inference in heterogeneous populations—Are recent recombination events more relevant?. Briefings in Bioinformatics, 2021, 22, .	3.2	2
64	Deciphering Genetic Susceptibility to Tuberculous Meningitis. Frontiers in Neurology, 2022, 13, 820168.	1.1	2
65	Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. International Journal of Infectious Diseases, 2014, 21, 300.	1.5	1
66	. Genetic Perspectives of Tuberculosis in Southern Africa. , 2012, , 487-499.		0