
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2780498/publications.pdf Version: 2024-02-01

FLINE MENU

#	Article	IF	CITATIONS
1	Targeting coenzyme Q10 synthesis overcomes bortezomib resistance in multiple myeloma. Molecular Omics, 2022, 18, 19-30.	1.4	8
2	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	1.8	25
3	Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis. Journal of Experimental and Clinical Cancer Research, 2022, 41, 45.	3.5	13
4	Exosomes in multiple myeloma: from bench toÂbedside. Blood, 2022, 140, 2429-2442.	0.6	9
5	System Xcâ^' inhibition blocks bone marrow-multiple myeloma exosomal crosstalk, thereby countering bortezomib resistance. Cancer Letters, 2022, 535, 215649.	3.2	11
6	Targeting phosphoglycerate dehydrogenase in multiple myeloma. Experimental Hematology and Oncology, 2021, 10, 3.	2.0	12
7	A distinct metabolic response characterizes sensitivity to EZH2 inhibition in multiple myeloma. Cell Death and Disease, 2021, 12, 167.	2.7	12
8	Single-cell analysis at the protein level delineates intracellular signaling dynamic during hematopoiesis. BMC Biology, 2021, 19, 201.	1.7	5
9	Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood, 2021, 138, 1594-1594.	0.6	1
10	Pyrroline-5-Carboxylate Reductase 1: A Novel Target for Sensitizing Myeloma to Cytotoxic Agents By Inhibition of PRAS40-Mediated Protein Synthesis. Blood, 2021, 138, 1574-1574.	0.6	0
11	Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade. , 2020, 8, e000610.		70
12	Identification of the immune checkpoint signature of multiple myeloma using mass cytometryâ€based singleâ€cell analysis. Clinical and Translational Immunology, 2020, 9, e01132.	1.7	14
13	AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers, 2019, 11, 1727.	1.7	18
14	The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 740.	1.1	5
15	The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. British Journal of Cancer, 2019, 120, 1137-1146.	2.9	12
16	Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma. Blood Cancer Journal, 2019, 9, 87.	2.8	7
17	Immunosuppressive adenosine - a novel treatment target for multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e137-e138.	0.2	0
18	The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers, 2019, 11, 1823.	1.7	36

#	Article	IF	CITATIONS
19	Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Letters, 2019, 442, 233-241.	3.2	49
20	The Exosomal Transfer of Acid Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Blood, 2019, 134, 3058-3058.	0.6	2
21	PF577 TARGETING PROTEIN ARGININE METHYLTRANFERASE PRMT5 IN HIGHâ€RISK MULTIPLE MYELOMA: A NEW TREATMENT STRATEGY?. HemaSphere, 2019, 3, 240-241.	1.2	0
22	PS1369 AMITRIPTYLINE STRENGTHENS THE EFFECTS OF BORTEZOMIB AND MELPHALAN TREATMENT IN MULTIPLE MYELOMA BY INHIBITING ACID SPHINGOMYELINASE. HemaSphere, 2019, 3, 626.	1.2	1
23	MCL1 Inhibitors in Multiple Myeloma. Blood, 2019, 134, SCI-12-SCI-12.	0.6	1
24	Receptor Tyrosine Kinase AXL: A Potential Strategy to Counter Immune Suppression and Dormancy in Multiple Myeloma. Blood, 2019, 134, 4335-4335.	0.6	0
25	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.4	27
26	Molecular mechanisms, current management and next generation therapy in myeloma bone disease. Leukemia and Lymphoma, 2018, 59, 14-28.	0.6	17
27	Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer Journal, 2018, 8, 105.	2.8	113
28	The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Frontiers in Oncology, 2018, 8, 566.	1.3	39
29	The genetic landscape of 5T models for multiple myeloma. Scientific Reports, 2018, 8, 15030.	1.6	15
30	Metabolic Features of Multiple Myeloma. International Journal of Molecular Sciences, 2018, 19, 1200.	1.8	53
31	Checkpoint inhibition in the treatment of multiple myeloma: A way to boost innate-like T cell anti-tumor function?. Molecular Immunology, 2018, 101, 521-526.	1.0	6
32	Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncolmmunology, 2018, 7, e1484981.	2.1	26
33	Abstract LB-117: Role of ectoenzymes CD39 and CD73 in the immune response to multiple myeloma. Cancer Research, 2018, 78, LB-117-LB-117.	0.4	2
34	Abstract 2120: Inhibition of multiple myeloma exosomes prevents bone loss and reduces tumor growth. , 2018, , .		0
35	Exosomes Play a Key Role in Multiple Myeloma Bone Disease and Tumor Development. Blood, 2018, 132, 4484-4484.	0.6	3
36	Both mucosal-associated invariant and natural killer T-cell deficiency in multiple myeloma can be countered by PD-1 inhibition. Haematologica, 2017, 102, e266-e270.	1.7	28

#	Article	IF	CITATIONS
37	Leptin receptor antagonism of iNKT cell function: a novel strategy to combat multiple myeloma. Leukemia, 2017, 31, 2678-2685.	3.3	25
38	Tumourâ€associated macrophageâ€mediated survival of myeloma cells through <scp>STAT3</scp> activation. Journal of Pathology, 2017, 241, 534-546.	2.1	50
39	Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion. Cancer Immunology Research, 2017, 5, 839-846.	1.6	41
40	The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget, 2017, 8, 90501-90520.	0.8	39
41	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
42	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	0.8	53
43	Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. Journal of Pathology, 2016, 239, 162-173.	2.1	185
44	Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Letters, 2016, 377, 17-24.	3.2	106
45	A GRP78-Directed Monoclonal Antibody Recaptures Response in Refractory Multiple Myeloma with Extramedullary Involvement. Clinical Cancer Research, 2016, 22, 4341-4349.	3.2	43
46	Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia, 2016, 30, 640-648.	3.3	69
47	Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget, 2016, 7, 6521-6537.	0.8	66
48	Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget, 2016, 7, 4062-4076.	0.8	33
49	Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?. Oncotarget, 2016, 7, 23128-23140.	0.8	12
50	SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma. Oncotarget, 2016, 7, 30712-30729.	0.8	19
51	The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget, 2016, 7, 48732-48752.	0.8	40
52	The Crosstalk Between Leptin Receptor Activation and iNKT Mediated Anti-Tumor Immunity in Multiple Myeloma. Blood, 2016, 128, 2075-2075.	0.6	0
53	Targeting S100A9 Interactions in the Multiple Myeloma Bone Marrow Environment Reduces Angiogenesis and Tumor Growth. Blood, 2016, 128, 3248-3248.	0.6	0
54	RASSF4 functions as a tumor suppressor in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, e227.	0.2	1

#	Article	IF	CITATIONS
55	Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 10532-10547.	0.8	64
56	The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 43992-44004.	0.8	127
57	<i>In vivo</i> treatment with epigenetic modulating agents induces transcriptional alterations associated with prognosis and immunomodulation in multiple myeloma. Oncotarget, 2015, 6, 3319-3334.	0.8	25
58	The Src Inhibitor AZD0530 Prevents the Development of Osteolytic Bone Disease in Multiple Myeloma. Blood, 2015, 126, 3018-3018.	0.6	0
59	Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia, 2014, 28, 444-447.	3.3	68
60	Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma. Cancers, 2014, 6, 1363-1381.	1.7	68
61	Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood, 2014, 124, 555-566.	0.6	371
62	Myeloid-Derived Suppressor Cells as Therapeutic Target in Hematological Malignancies. Frontiers in Oncology, 2014, 4, 349.	1.3	92
63	Stimulation of invariant natural killer T cells by αâ€Galactosylceramide activates the <scp>JAK</scp> â€ <scp>STAT</scp> pathway in endothelial cells and reduces angiogenesis in the 5T33 multiple myeloma model. British Journal of Haematology, 2014, 167, 651-663.	1.2	12
64	Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia, 2014, 28, 904-916.	3.3	88
65	Myeloid Derived Suppressor Cell Mediated AMPK Activation Regulates Multiple Myeloma Cell Survival. Blood, 2014, 124, 2009-2009.	0.6	3
66	The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget, 2014, 5, 3115-3129.	0.8	48
67	The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget, 2014, 5, 11193-11208.	0.8	15
68	The in vivo Transcriptional Response Towards Epigenetic Modulating Agents in Multiple Myeloma. Blood, 2014, 124, 3375-3375.	0.6	0
69	Targeting the Anaphase Promoting Complex/Cyclosome (APC/C) in Multiple Myeloma. Blood, 2014, 124, 2097-2097.	0.6	1
70	Synergistic Induction of Apoptosis in Multiple Myeloma Cells by Bortezomib and Hypoxia-Activated Prodrug TH-302, <i>In Vivo</i> and <i>In Vitro</i> . Molecular Cancer Therapeutics, 2013, 12, 1763-1773.	1.9	48
71	Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma. Cancers, 2013, 5, 430-461.	1.7	43
72	Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model. PLoS ONE, 2013, 8, e65075.	1.1	24

#	Article	IF	CITATIONS
73	Epigenetic Regulation of Myeloma Within Its Bone Marrow Microenvironment. , 2013, , 255-282.		Ο
74	The Role of Notch Signaling in Multiple Myeloma. , 2013, , 77-95.		1
75	Bone Marrow Stromal Cell-Derived Exosomes Facilitate Multiple Myeloma Cell Survival Through Inhibition Of The JNK Pathway. Blood, 2013, 122, 679-679.	0.6	0
76	The HDAC Inhibitor LBH589 Enhances the Antimyeloma Effects of the IGF-1RTK Inhibitor Picropodophyllin. Clinical Cancer Research, 2012, 18, 2230-2239.	3.2	16
77	Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia, 2012, 26, 2424-2428.	3.3	67
78	Tumor-initiating capacity of CD138â^' and CD138+ tumor cells in the 5T33 multiple myeloma model. Leukemia, 2012, 26, 1436-1439.	3.3	31
79	Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM-cell proliferation. Leukemia, 2012, 26, 1402-1405.	3.3	42
80	Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. DMM Disease Models and Mechanisms, 2012, 5, 763-771.	1.2	51
81	Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood, 2012, 119, 826-837.	0.6	78
82	Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochemical and Biophysical Research Communications, 2012, 428, 518-524.	1.0	47
83	Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia, 2012, 26, 2546-2549.	3.3	45
84	Bone Marrow-Derived Mesenchymal Stromal Cells are Attracted by Multiple Myeloma Cell-Produced Chemokine CCL25 and Favor Myeloma Cell Growth in Vitro and In Vivo. Stem Cells, 2012, 30, 266-279.	1.4	87
85	The DNA Methyltransferase Inhibitor Decitabine Induces DNA Damage, Cell Cycle Arrest and Apoptosis in Multiple Myeloma. Blood, 2012, 120, 1833-1833.	0.6	3
86	Combination of the IGF-1 Receptor Inhibitor Picropodophylin and the BH3 Mimetic ABT-737 Has Synergistic Anti-Myeloma Activity. Blood, 2012, 120, 4010-4010.	0.6	0
87	Preclinical Evaluation of Invariant Natural Killer T-Cells in the 5T33 Multiple Myeloma Model. Blood, 2012, 120, 938-938.	0.6	Ο
88	Dll1/Notch Interaction Contributes to a Decreased Sensitivity of Myeloma Cells to Bortezomib. Blood, 2012, 120, 1840-1840.	0.6	0
89	The Microenvironment and Molecular Biology of the Multiple Myeloma Tumor. Advances in Cancer Research, 2011, 110, 19-42.	1.9	61
90	IGF-1 suppresses Bim expression in multiple myeloma via epigenetic and posttranslational mechanisms. Blood, 2010, 115, 2430-2440.	0.6	88

#	Article	lF	CITATIONS
91	Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood, 2010, 116, 1524-1527.	0.6	131
92	Thymosin Â4 has tumor suppressive effects and its decreased expression results in poor prognosis and decreased survival in multiple myeloma. Haematologica, 2010, 95, 163-167.	1.7	22
93	The Effects of Forodesine in Murine and Human Multiple Myeloma Cells. Advances in Hematology, 2010, 2010, 1-8.	0.6	4
94	Involvement of Dll1/Notch Interaction In MM Drug Resistance, Clonogenic Growth and In Vivo Engraftment. Blood, 2010, 116, 2966-2966.	0.6	0
95	Histone deacetylase inhibitors in multiple myeloma. Hematology Reports, 2009, 1, 9.	0.3	1
96	The role of the insulin-like growth factor 1 receptor axis in multiple myeloma. Archives of Physiology and Biochemistry, 2009, 115, 49-57.	1.0	36
97	Bortezomib Alone or in Combination with the Histone Deacetylase Inhibitor JNJ-26481585: Effect on Myeloma Bone Disease in the 5T2MM Murine Model of Myeloma. Cancer Research, 2009, 69, 5307-5311.	0.4	70
98	The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia, 2009, 23, 1894-1903.	3.3	51
99	Epigenetic Regulation of Multiple Myeloma Within its Bone Marrow Microenvironment. Clinical Lymphoma and Myeloma, 2009, 9, S29-S30.	1.4	1
100	Myeloid-Derived Suppressor Cells in Multiple Myeloma Blood, 2009, 114, 2794-2794.	0.6	2
101	Hypoxia Activated Prodrug TH-302 for the Treatment of Multiple Myeloma Blood, 2009, 114, 3838-3838.	0.6	2
102	Antitumour and antiangiogenic effects of Aplidin® in the 5TMM syngeneic models of multiple myeloma. British Journal of Cancer, 2008, 98, 1966-1974.	2.9	36
103	Oral picropodophyllin (PPP) is well tolerated <i>in vivo</i> and inhibits IGFâ€IR expression and growth of uveal melanoma. Acta Ophthalmologica, 2008, 86, 35-41.	0.6	15
104	Inhibition of VEGF secretion and experimental choroidal neovascularization by picropodophyllin (PPP), an inhibitor of the insulinâ€like growth factorâ€1 receptor. Acta Ophthalmologica, 2008, 86, 42-49.	0.6	11
105	Epigenetic Silencing of the Tetraspanin CD9 during Disease Progression in Multiple Myeloma Cells and Correlation with Survival. Clinical Cancer Research, 2008, 14, 2918-2926.	3.2	46
106	A Novel Therapeutic Combination Using PD 0332991 and Bortezomib: Study in the 5T33MM Myeloma Model. Cancer Research, 2008, 68, 5519-5523.	0.4	98
107	Inhibition of VEGF Secretion and Experimental Choroidal Neovascularization by Picropodophyllin (PPP), an Inhibitor of the Insulin-like Growth Factor-1 Receptor. , 2008, 49, 2620.		38
108	Oral Picropodophyllin (PPP) Is Well Tolerated In Vivo and Inhibits IGF-1R Expression and Growth of Uveal Melanoma. , 2008, 49, 2337.		47

#	Article	IF	CITATIONS
109	Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment. Bulletin Du Cancer, 2008, 95, 301-13.	0.6	27
110	Decreased Thymosin Beta 4 Expression Results in Poor Prognosis and Decreased Survival in Multiple Myeloma Blood, 2008, 112, 1703-1703.	0.6	0
111	Inhibition of p38α Mitogen-Activated Protein Kinase Prevents the Development of Osteolytic Bone Disease, Reduces Tumor Burden, and Increases Survival in Murine Models of Multiple Myeloma. Cancer Research, 2007, 67, 4572-4577.	0.4	43
112	Myeloma Cells and Their Interactions With the Bone Marrow Endothelial Cells. Current Immunology Reviews, 2007, 3, 41-55.	1.2	6
113	Targeting the IGF-1R using picropodophyllin in the therapeutical 5T2MM mouse model of multiple myeloma: Beneficial effects on tumor growth, angiogenesis, bone disease and survival. International Journal of Cancer, 2007, 121, 1857-1861.	2.3	57
114	Regulation of Bim Expression by IGF-1 in the 5T33MM Murine Model for Multiple Myeloma Blood, 2007, 110, 3512-3512.	0.6	2
115	Targeting CDK4/6 and the Cell Cycle in Combination with Bortezomib in the 5T33MM Myeloma Model Blood, 2007, 110, 254-254.	0.6	0
116	Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood, 2006, 107, 655-660.	0.6	124
117	Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clinical and Experimental Metastasis, 2006, 23, 291-300.	1.7	103
118	Inhibition of p38α MAPK Reduces Tumor Burden, Prevents the Development of Myeloma Bone Disease, and Increases Survival in the 5T2 and 5T33 Murine Models of Myeloma Blood, 2006, 108, 3436-3436.	0.6	7
119	The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica, 2006, 91, 605-12.	1.7	56
120	The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. British Journal of Haematology, 2005, 132, 051220022257013.	1.2	37
121	Specific roles for the PI3K and the MEK–ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: study in the 5T33MM model. British Journal of Cancer, 2004, 90, 1076-1083.	2.9	96
122	Myeloma cells (5TMM) and their interactions with the marrow microenvironment. Blood Cells, Molecules, and Diseases, 2004, 33, 111-119.	0.6	30
123	Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood, 2004, 103, 3131-3137.	0.6	55
124	Inhibiting the IGF-1 Receptor Tyrosine Kinase with Picropodophillin: An In Vitro and In Vivo Study in the 5T33MM Mouse Model Blood, 2004, 104, 640-640.	0.6	0
125	The new anti-actin agent dihydrohalichondramide reveals fenestrae-forming centers in hepatic endothelial cells. BMC Cell Biology, 2002, 3, 7.	3.0	35
126	The Fâ€Actin Content of Multiple Myeloma Cells as a Measure of Their Migration. Annals of the New York Academy of Sciences, 2002, 973, 124-136.	1.8	19

#	Article	IF	CITATIONS
127	Mechanisms involved in the differential bone marrow homing of CD45 subsets in 5T murine models of myeloma. Clinical and Experimental Metastasis, 2002, 19, 583-591.	1.7	25
128	Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget, 0, 7, 42698-42715.	0.8	34
129	The SRC kinase inhibitor saracatinib limits the development of osteolytic bone disease in multiple myeloma. Bone Abstracts, 0, , .	0.0	1
130	Inhibition of the Protein Arginine Methyltransferase PRMT5 in High-Risk Multiple Myeloma as a Novel Treatment Approach. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3