
## Benoit G Bruneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2780075/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell, 2010, 142, 375-386.                                                                 | 13.5 | 2,235     |
| 2  | miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell, 2008, 15, 272-284.                                                                            | 3.1  | 1,489     |
| 3  | Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell, 2017, 169, 930-944.e22.                                   | 13.5 | 1,374     |
| 4  | A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box Transcription Factor Tbx5 in Cardiogenesis and Disease. Cell, 2001, 106, 709-721.                                | 13.5 | 957       |
| 5  | The developmental genetics of congenital heart disease. Nature, 2008, 451, 943-948.                                                                                              | 13.7 | 673       |
| 6  | Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage.<br>Cell, 2012, 151, 206-220.                                                  | 13.5 | 555       |
| 7  | Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome.<br>Nature Genetics, 1997, 16, 311-315.                                           | 9.4  | 511       |
| 8  | Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature, 2009, 459, 708-711.                                                                  | 13.7 | 498       |
| 9  | Baf60c is essential for function of BAF chromatin remodelling complexes in heart development.<br>Nature, 2004, 432, 107-112.                                                     | 13.7 | 478       |
| 10 | Chamber-Specific Cardiac Expression of Tbx5 and Heart Defects in Holt–Oram Syndrome.<br>Developmental Biology, 1999, 211, 100-108.                                               | 0.9  | 453       |
| 11 | Single-Cell Resolution of Temporal Gene Expression during Heart Development. Developmental Cell, 2016, 39, 480-490.                                                              | 3.1  | 361       |
| 12 | Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State. Stem Cell Reports, 2013, 1, 235-247.                                                                | 2.3  | 351       |
| 13 | Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development (Cambridge), 2004, 131, 3217-3227.                                                           | 1.2  | 348       |
| 14 | Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovascular Research, 1996, 31, 7-18.                                                                        | 1.8  | 262       |
| 15 | Cardiac natriuretic peptides. Nature Reviews Cardiology, 2020, 17, 698-717.                                                                                                      | 6.1  | 262       |
| 16 | Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Developmental Biology, 2003, 262, 206-224. | 0.9  | 260       |
| 17 | The functional landscape of mouse gene expression. Journal of Biology, 2004, 3, 21.                                                                                              | 2.7  | 259       |
| 18 | Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development (Cambridge), 2003, 130, 623-633.                           | 1.2  | 253       |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes<br>containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system<br>changes. Human Molecular Genetics, 2010, 19, 1633-1650. | 1.4  | 237       |
| 20 | Transcriptional Regulation of Vertebrate Cardiac Morphogenesis. Circulation Research, 2002, 90, 509-519.                                                                                                                                                     | 2.0  | 234       |
| 21 | The Homeodomain Transcription Factor Irx5 Establishes the Mouse Cardiac Ventricular Repolarization<br>Gradient. Cell, 2005, 123, 347-358.                                                                                                                    | 13.5 | 233       |
| 22 | Regulation of Chamber-Specific Gene Expression in the Developing Heart by Irx4. Science, 1999, 283, 1161-1164.                                                                                                                                               | 6.0  | 232       |
| 23 | Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nature Genetics, 2012, 44, 343-347.                                                                                                       | 9.4  | 230       |
| 24 | Signaling and Transcriptional Networks in Heart Development and Regeneration. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008292-a008292.                                                                                                          | 2.3  | 213       |
| 25 | A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development (Cambridge),<br>2005, 132, 4375-4386.                                                                                                                                  | 1.2  | 211       |
| 26 | Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development (Cambridge), 2005, 132, 2463-2474.                                                                                           | 1.2  | 205       |
| 27 | Tbx5 is required for forelimb bud formation and continued outgrowth. Development (Cambridge), 2003, 130, 2741-2751.                                                                                                                                          | 1.2  | 204       |
| 28 | Early patterning and specification of cardiac progenitors in gastrulating mesoderm. ELife, 2014, 3, .                                                                                                                                                        | 2.8  | 202       |
| 29 | ATP-dependent chromatin remodeling during mammalian development. Development (Cambridge), 2016,<br>143, 2882-2897.                                                                                                                                           | 1.2  | 194       |
| 30 | The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development (Cambridge), 2004, 131, 4107-4116.                                                                                    | 1.2  | 188       |
| 31 | Epigenetics and Cardiovascular Development. Annual Review of Physiology, 2012, 74, 41-68.                                                                                                                                                                    | 5.6  | 187       |
| 32 | Cardiac Expression of the Ventricle-Specific Homeobox Gene Irx4 Is Modulated by Nkx2-5 and dHand.<br>Developmental Biology, 2000, 217, 266-277.                                                                                                              | 0.9  | 183       |
| 33 | RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Molecular Cell, 2019, 76, 412-422.e5.                                                                                                                                                  | 4.5  | 183       |
| 34 | Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO<br>Journal, 2004, 23, 3677-3688.                                                                                                                          | 3.5  | 179       |
| 35 | Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates<br>Cardiogenesis. Cell, 2016, 164, 999-1014.                                                                                                                 | 13.5 | 179       |
| 36 | Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature Communications, 2011, 2, 187.                                                                                                                      | 5.8  | 175       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Human Disease Modeling Reveals Integrated Transcriptional and Epigenetic Mechanisms of NOTCH1<br>Haploinsufficiency. Cell, 2015, 160, 1072-1086.                                                                 | 13.5 | 173       |
| 38 | Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Developmental<br>Biology, 2006, 297, 566-586.                                                                                    | 0.9  | 164       |
| 39 | Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart.<br>Nature Genetics, 2006, 38, 175-183.                                                                        | 9.4  | 156       |
| 40 | TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Current Opinion in Cardiology, 2004, 19, 211-215.                                                                                      | 0.8  | 152       |
| 41 | Cardiomyopathy in Irx4 -Deficient Mice Is Preceded by Abnormal Ventricular Gene Expression.<br>Molecular and Cellular Biology, 2001, 21, 1730-1736.                                                              | 1.1  | 150       |
| 42 | Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell, 2019, 176, 816-830.e18.                                                                                                  | 13.5 | 144       |
| 43 | A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development<br>(Cambridge), 2011, 138, 1409-1419.                                                                      | 1.2  | 142       |
| 44 | Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 2009, 461, 95-98.                                                                                                      | 13.7 | 135       |
| 45 | HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.                       | 2.7  | 132       |
| 46 | Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nature<br>Genetics, 2020, 52, 1151-1157.                                                                                      | 9.4  | 127       |
| 47 | ETS Factors Regulate Vegf-Dependent Arterial Specification. Developmental Cell, 2013, 26, 45-58.                                                                                                                 | 3.1  | 124       |
| 48 | Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms. Cell Stem Cell, 2015, 17, 300-315.                                                     | 5.2  | 124       |
| 49 | Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nature<br>Immunology, 2020, 21, 513-524.                                                                           | 7.0  | 118       |
| 50 | Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts. Cell Stem Cell, 2016, 18,<br>368-381.                                                                                                  | 5.2  | 115       |
| 51 | <i>Iroquois homeobox gene 3</i> establishes fast conduction in the cardiac His–Purkinje network.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13576-13581.     | 3.3  | 109       |
| 52 | Baf60c is a nuclear Notch signaling component required for the establishment of left–right<br>asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>846-851. | 3.3  | 108       |
| 53 | Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart.<br>Human Molecular Genetics, 2010, 19, 4625-4633.                                                               | 1.4  | 106       |
| 54 | Acetylation of RNA Polymerase II Regulates Growth-Factor-Induced Gene Transcription in Mammalian<br>Cells. Molecular Cell, 2013, 52, 314-324.                                                                    | 4.5  | 103       |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular basis of CTCF binding polarity in genome folding. Nature Communications, 2020, 11, 5612.                                                                                                | 5.8 | 102       |
| 56 | Evidence for Load-Dependent and Load-Independent Determinants of Cardiac Natriuretic Peptide<br>Production. Circulation, 1996, 93, 2059-2067.                                                     | 1.6 | 102       |
| 57 | WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nature Genetics, 2021, 53, 100-109.                                                                 | 9.4 | 101       |
| 58 | KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.<br>Development (Cambridge), 2016, 143, 810-821.                                                    | 1.2 | 100       |
| 59 | The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development.<br>Developmental Biology, 2005, 287, 48-60.                                                              | 0.9 | 90        |
| 60 | Brg1 modulates enhancer activation in mesoderm lineage commitment. Development (Cambridge), 2015,<br>142, 1418-30.                                                                                | 1.2 | 81        |
| 61 | Investigating the Transcriptional Control of Cardiovascular Development. Circulation Research, 2015, 116, 700-714.                                                                                | 2.0 | 77        |
| 62 | Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal of Cell Biology, 2011, 193, 1181-1196.                                                      | 2.3 | 74        |
| 63 | Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell, 2021, 28, 2137-2152.e6.                                            | 5.2 | 73        |
| 64 | Function-based identification of mammalian enhancers using site-specific integration. Nature Methods, 2014, 11, 566-571.                                                                          | 9.0 | 71        |
| 65 | Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nature Ecology and Evolution, 2019, 3, 1241-1252.                              | 3.4 | 67        |
| 66 | Selective changes in natriuretic peptide and early response gene expression in isolated rat atria following stimulation by stretch or endothelin-1. Cardiovascular Research, 1994, 28, 1519-1525. | 1.8 | 66        |
| 67 | Dissociation of cardiac hypertrophy, myosin heavy chain isoform expression, and natriuretic peptide production in DOCA-salt rats. American Journal of Hypertension, 1995, 8, 301-310.             | 1.0 | 66        |
| 68 | Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development (Cambridge), 2012, 139, 4007-4019.                                            | 1.2 | 66        |
| 69 | The Ubiquitin Ligase Nedd4-1 Is Required for Heart Development and Is a Suppressor of Thrombospondin-1. Journal of Biological Chemistry, 2010, 285, 6770-6780.                                    | 1.6 | 65        |
| 70 | Alternative Induced Pluripotent Stem Cell Characterization Criteria for In Vitro Applications. Cell<br>Stem Cell, 2009, 4, 198-199.                                                               | 5.2 | 64        |
| 71 | <i>Iroquois</i> Homeodomain Transcription Factors in Heart Development and Function. Circulation<br>Research, 2012, 110, 1513-1524.                                                               | 2.0 | 63        |
| 72 | Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease.<br>Developmental Cell, 2021, 56, 292-309.e9.                                                    | 3.1 | 63        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | CTCF confers local nucleosome resiliency after DNA replication and during mitosis. ELife, 2019, 8, .                                                                                                     | 2.8  | 61        |
| 74 | Ezh2 regulates anteroposterior axis specification and proximodistal axis elongation in the developing limb. Development (Cambridge), 2011, 138, 3759-3767.                                               | 1.2  | 60        |
| 75 | Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proceedings of the<br>National Academy of Sciences of the United States of America, 2008, 105, 5519-5524.              | 3.3  | 59        |
| 76 | An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19356-19361. | 3.3  | 59        |
| 77 | A De Novo Shape Motif Discovery Algorithm Reveals Preferences of Transcription Factors for DNA<br>Shape Beyond Sequence Motifs. Cell Systems, 2019, 8, 27-42.e6.                                         | 2.9  | 54        |
| 78 | The Iroquois Homeobox Gene Irx2 Is Not Essential for Normal Development of the Heart and<br>Midbrain-Hindbrain Boundary in Mice. Molecular and Cellular Biology, 2003, 23, 8216-8225.                    | 1.1  | 49        |
| 79 | The developing heart and congenital heart defects: a make or break situation. Clinical Genetics, 2003, 63, 252-261.                                                                                      | 1.0  | 48        |
| 80 | Serum Response Factor, an Enriched Cardiac Mesoderm Obligatory Factor, Is a Downstream Gene<br>Target for Tbx Genes. Journal of Biological Chemistry, 2005, 280, 11816-11828.                            | 1.6  | 48        |
| 81 | CTCF Promotes Muscle Differentiation by Modulating the Activity of Myogenic Regulatory Factors.<br>Journal of Biological Chemistry, 2011, 286, 12483-12494.                                              | 1.6  | 48        |
| 82 | Ezh2-mediated repression of a transcriptional pathway upstream of <i>Mmp9</i> maintains integrity of the developing vasculature. Development (Cambridge), 2014, 141, 4610-4617.                          | 1.2  | 47        |
| 83 | Abnormal cardiac inflow patterns during postnatal development in a mouse model of Holt-Oram<br>syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H992-H1001.       | 1.5  | 45        |
| 84 | Chromatin remodeling in heart development. Current Opinion in Genetics and Development, 2010, 20, 505-511.                                                                                               | 1.5  | 43        |
| 85 | Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. Nature Communications, 2018, 9, 4977.                                                          | 5.8  | 42        |
| 86 | BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria.<br>American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2678-H2686.    | 1.5  | 41        |
| 87 | Connexin 40, a Target of Transcription Factor Tbx5, Patterns Wrist, Digits, and Sternum. Molecular<br>and Cellular Biology, 2005, 25, 5073-5083.                                                         | 1.1  | 41        |
| 88 | NKX2-5 Regulates the Expression of $\hat{l}^2$ -Catenin and GATA4 in Ventricular Myocytes. PLoS ONE, 2009, 4, e5698.                                                                                     | 1.1  | 41        |
| 89 | Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis. Development (Cambridge), 2019, 146, .                                 | 1.2  | 39        |
| 90 | Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell, 2022, 185,<br>794-814.e30.                                                                                 | 13.5 | 39        |

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Genome-wide analysis of mouse transcripts using exon microarrays and factor graphs. Nature<br>Genetics, 2005, 37, 991-996.                                                 | 9.4  | 38        |
| 92  | Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biology, 2020, 21, 108.                                                    | 3.8  | 37        |
| 93  | Characterization of natriuretic peptide production by adult heart atria. American Journal of<br>Physiology - Heart and Circulatory Physiology, 1999, 276, H1977-H1986.     | 1.5  | 33        |
| 94  | Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function. Biology Open, 2018, 7, . | 0.6  | 33        |
| 95  | Regulation of retinal interneuron subtype identity by the <i>Iroquois</i> homeobox gene <i>Irx6</i> .<br>Development (Cambridge), 2012, 139, 4644-4655.                    | 1.2  | 32        |
| 96  | Lessons for cardiac regeneration and repair through development. Trends in Molecular Medicine, 2010, 16, 426-434.                                                          | 3.5  | 30        |
| 97  | Salt-inducible kinase 1 maintains HDAC7 stability to promote pathologic cardiac remodeling. Journal of Clinical Investigation, 2020, 130, 2966-2977.                       | 3.9  | 29        |
| 98  | 4D cardiac MRI in the mouse. NMR in Biomedicine, 2007, 20, 360-365.                                                                                                        | 1.6  | 27        |
| 99  | Congenital Heart Disease. Circulation Research, 2014, 114, 598-599.                                                                                                        | 2.0  | 27        |
| 100 | Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor. Molecular Biology and Evolution, 2016, 33, 1008-1018.                                                   | 3.5  | 23        |
| 101 | Brahma safeguards canalization of cardiac mesoderm differentiation. Nature, 2022, 602, 129-134.                                                                            | 13.7 | 22        |
| 102 | Epigenetic Regulation of the Cardiovascular System. Circulation Research, 2010, 107, 324-326.                                                                              | 2.0  | 21        |
| 103 | Loss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization. Bone Reports, 2016, 5, 86-95.                                      | 0.2  | 21        |
| 104 | Chromatin modulators as facilitating factors in cellular reprogramming. Current Opinion in Genetics and Development, 2013, 23, 556-561.                                    | 1.5  | 20        |
| 105 | Tiny brakes for a growing heart. Nature, 2005, 436, 181-182.                                                                                                               | 13.7 | 19        |
| 106 | Minimal <i>in vivo</i> requirements for developmentally regulated cardiac long intergenic<br>non-coding RNAs. Development (Cambridge), 2019, 146, .                        | 1.2  | 19        |
| 107 | Irxl1, a divergent Iroquois homeobox family transcription factor gene. Gene Expression Patterns, 2007,<br>7, 51-56.                                                        | 0.3  | 13        |
| 108 | Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites.<br>Development (Cambridge), 2017, 144, 1235-1241.                         | 1.2  | 12        |

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The developing heart: from <i>The Wizard of Oz</i> to congenital heart disease. Development<br>(Cambridge), 2020, 147, .                                        | 1.2  | 11        |
| 110 | Atrial natriuretic factor in the developing heart: a signpost for cardiac morphogenesis. Canadian<br>Journal of Physiology and Pharmacology, 2011, 89, 533-537. | 0.7  | 8         |
| 111 | Direct Reprogramming for Cardiac Regeneration. Circulation Research, 2012, 110, 1392-1394.                                                                      | 2.0  | 8         |
| 112 | Chromatin Domains Go on Repeat in Disease. Cell, 2018, 175, 38-40.                                                                                              | 13.5 | 8         |
| 113 | Mouse models of cardiac chamber formation and congenital heart disease. Trends in Genetics, 2002, 18, S15-S20.                                                  | 2.9  | 7         |
| 114 | Modeling congenital heart disease: lessons from mice, hPSC-based models, and organoids. Genes and Development, 2022, 36, 652-663.                               | 2.7  | 6         |
| 115 | Chromatin and epigenetics in development: a Special Issue. Development (Cambridge), 2019, 146, .                                                                | 1.2  | 5         |
| 116 | Chromatin Modification and Remodeling in Heart Development. Scientific World Journal, The, 2006, 6, 1851-1861.                                                  | 0.8  | 3         |
| 117 | Finding a niche for cardiac precursors. ELife, 2014, 3, e02993.                                                                                                 | 2.8  | 2         |
| 118 | Transcriptional Control of the Cardiac Conduction System. Advances in Developmental Biology<br>(Amsterdam, Netherlands), 2007, 18, 219-258.                     | 0.4  | 1         |
| 119 | Aetiology of Congenital Cardiac Disease. , 2010, , 161-171.                                                                                                     |      | 1         |
| 120 | Dissecting CTCF site function in a tense HoxD locus. Genes and Development, 2021, 35, 1401-1402.                                                                | 2.7  | 1         |
| 121 | Chromatin Modification and Remodeling in Heart Development. , 2010, , 703-714.                                                                                  |      | 0         |
| 122 | Preface. Current Topics in Developmental Biology, 2012, 100, xv-xvi.                                                                                            | 1.0  | 0         |
| 123 | Cardiac Myocyte Specification and Differentiation. , 2012, , 25-34.                                                                                             |      | 0         |
| 124 | Chromatin Modification and Remodeling in Heart Development. TSW Development & Embryology, 2006, 1, 37-47.                                                       | 0.2  | 0         |
| 125 | Origin and Identity of the Right Heart. , 2009, , 3-8.                                                                                                          |      | 0         |
| 126 | Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. Journal<br>of Experimental Medicine, 2011, 208, i20-i20.          | 4.2  | 0         |