
Pradip Pachfule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	2
2	Superstructures of Organic–Polyoxometalate Co rystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
3	Covalent Organic Framework (COF) Derived Niâ€N Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie, 2022, 134, .	1.6	8
4	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie, 2022, 134, .	1.6	6
5	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
6	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
7	Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society, 2020, 142, 14033-14038.	6.6	68
8	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H ₂ O ₂ Generation. Journal of the American Chemical Society, 2020, 142, 20107-20116.	6.6	239
9	Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nature Communications, 2020, 11, 4712.	5.8	183
10	Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Roomâ€Temperature Gas Phase Catalysis. Angewandte Chemie, 2020, 132, 20002-20006.	1.6	3
11	Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Roomâ€Temperature Gas Phase Catalysis. Angewandte Chemie - International Edition, 2020, 59, 19830-19834.	7.2	8
12	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	6.6	21
13	Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization. Chemical Science, 2019, 10, 8316-8322.	3.7	124
14	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie - International Edition, 2019, 58, 14865-14870.	7.2	205
15	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie, 2019, 131, 15007-15012.	1.6	39
16	Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 6623-6630.	6.6	340
17	Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst. Chemistry of Materials, 2019, 31, 3274-3280.	3.2	108
18	Metalâ€Organic Precursor–Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807419.	7.8	104

#	Article	IF	CITATIONS
19	Ultrastable Imineâ€Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie - International Edition, 2018, 57, 5797-5802.	7.2	192
20	Ultrastable Imineâ€Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie, 2018, 130, 5899-5904.	1.6	39
21	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	6.6	646
22	Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Materials, 2018, 13, 72-79.	9.5	83
23	Hydrogen Generation: Metal–Organic Framework Templated Porous Carbonâ€Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid (Adv. Energy Mater. 1/2018). Advanced Energy Materials, 2018, 8, 1770139.	10.2	9
24	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie, 2018, 130, 9059-9064.	1.6	81
25	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie - International Edition, 2018, 57, 8921-8926.	7.2	291
26	Porosity Prediction through Hydrogen Bonding in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 5138-5145.	6.6	118
27	Metal–Organic Framework Templated Porous Carbonâ€Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. Advanced Energy Materials, 2018, 8, 1701416.	10.2	99
28	Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 2017, 139, 1856-1862.	6.6	432
29	From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. Journal of Materials Chemistry A, 2017, 5, 4835-4841.	5.2	80
30	Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 13785-13792.	4.0	162
31	High Catalytic Performance of MILâ€101â€Immobilized NiRu Alloy Nanoparticles towards the Hydrolytic Dehydrogenation of Ammonia Borane. European Journal of Inorganic Chemistry, 2016, 2016, 4353-4357.	1.0	51
32	Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chemistry, 2016, 8, 718-724.	6.6	913
33	Functionalization and Isoreticulation in a Series of Metal–Organic Frameworks Derived from Pyridinecarboxylates. Inorganic Chemistry, 2016, 55, 7200-7205.	1.9	31
34	Inside Cover: High Catalytic Performance of MIL-101-Immobilized NiRu Alloy Nanoparticles towards the Hydrolytic Dehydrogenation of Ammonia Borane (Eur. J. Inorg. Chem. 27/2016). European Journal of Inorganic Chemistry, 2016, 2016, 4530-4530.	1.0	0
35	Hydrogen carriers. Nature Reviews Materials, 2016, 1, .	23.3	602
36	From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach. Journal of Materials Chemistry A, 2016, 4, 4273-4279.	5.2	88

#	Article	IF	CITATIONS
37	Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chemical Communications, 2016, 52, 4171-4174.	2.2	120
38	Significant Gas Adsorption and Catalytic Performance by a Robust Cu ^{II} –MOF Derived through Singleâ€Crystal to Singleâ€Crystal Transmetalation of a Thermally Less‣table Zn ^{II} –MOF. Chemistry - A European Journal, 2015, 21, 19064-19070.	1.7	68
39	Hollow tubular porous covalent organic framework (COF) nanostructures. Chemical Communications, 2015, 51, 11717-11720.	2.2	89
40	From a metal–organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chemical Communications, 2015, 51, 13945-13948.	2.2	40
41	Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chemical Communications, 2015, 51, 310-313.	2.2	195
42	Evolution of an Adenine–Copper Cluster to a Highly Porous Cuboidal Framework: Solutionâ€Phase Ripening and Gasâ€Adsorption Properties. Chemistry - A European Journal, 2014, 20, 12262-12268.	1.7	29
43	Multifunctional and robust covalent organic framework–nanoparticle hybrids. Journal of Materials Chemistry A, 2014, 2, 7944-7952.	5.2	192
44	Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N,N′ linkers. CrystEngComm, 2014, 16, 2305.	1.3	33
45	Variation of CO2 adsorption in isostructural Cd(ii)/Co(ii) based MOFs by anion modulation. CrystEngComm, 2014, 16, 5012.	1.3	32
46	Syntheses, X-ray structures, catalytic activity and magnetic properties of two new coordination polymers of Co(<scp>ii</scp>) and Ni(<scp>ii</scp>) based on benzenedicarboxylate and linear N,N′-donor Schiff base linkers. Inorganic Chemistry Frontiers, 2014, 1, 414-425.	3.0	35
47	Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50, 3169-3172.	2.2	307
48	Transitionâ€Metalâ€Free Multicomponent Reactions Involving Arynes, Nâ€Heterocycles, and Isatins. Angewandte Chemie - International Edition, 2013, 52, 10040-10043.	7.2	107
49	Comprehensive Study on Mutual Interplay of Multiple V-Shaped Ligands on the Helical Nature of a Series of Coordination Polymers and Their Properties. Crystal Growth and Design, 2013, 13, 5487-5498.	1.4	35
50	Porous Carbons from Nonporous MOFs: Influence of Ligand Characteristics on Intrinsic Properties of End Carbon. Crystal Growth and Design, 2013, 13, 4195-4199.	1.4	138
51	Azide-Functionalized Lanthanide-Based Metal–Organic Frameworks Showing Selective CO ₂ Gas Adsorption and Postsynthetic Cavity Expansion. Inorganic Chemistry, 2013, 52, 3588-3590.	1.9	30
52	Four 3D Cd(II)-Based Metal Organic Hybrids with Different N,N′-Donor Spacers: Syntheses, Characterizations, and Selective Gas Adsorption Properties. Crystal Growth and Design, 2013, 13, 731-739.	1.4	57
53	Porousâ€Organicâ€Frameworkâ€Templated Nitrogenâ€Rich Porous Carbon as a More Proficient Electrocatalyst than Pt/C for the Electrochemical Reduction of Oxygen. Chemistry - A European Journal, 2013, 19, 974-980.	1.7	91
54	Metal and metal oxidenanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale, 2012, 4, 591-599.	2.8	334

#	Article	IF	CITATIONS
55	One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chemical Communications, 2012, 48, 2009.	2.2	96
56	Correction to Porous Nitrogen Rich Cadmium-Tetrazolate Based Metal Organic Framework (MOF) for H2 and CO2 Uptake. Crystal Growth and Design, 2012, 12, 4292-4292.	1.4	5
57	Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C–C coupling reactions. Dalton Transactions, 2012, 41, 1304-1311.	1.6	117
58	Metal [Zn(II), Cd(II)], 1,10-Phenanthroline Containing Coordination Polymers Constructed on the Skeleton of Polycarboxylates: Synthesis, Characterization, Microstructural, and CO ₂ Gas Adsorption Studies. Crystal Growth and Design, 2012, 12, 5311-5319.	1.4	42
59	Nanostructured Cd ₂ SnO ₄ as an energy harvesting photoanode for solar water splitting. Energy and Environmental Science, 2012, 5, 5681-5685.	15.6	36
60	Control of Porosity by Using Isoreticular Zeolitic Imidazolate Frameworks (IRZIFs) as a Template for Porous Carbon Synthesis. Chemistry - A European Journal, 2012, 18, 11399-11408.	1.7	122
61	Fluorinated Metal–Organic Frameworks: Advantageous for Higher H ₂ and CO ₂ Adsorption or Not?. Chemistry - A European Journal, 2012, 18, 688-694.	1.7	101
62	Hydrogen bond directed honeycomb-like porous network structure of tris(bipyridyl-glycoluril)cobalt(iii) chloride. CrystEngComm, 2011, 13, 5289.	1.3	15
63	Selectivity Tailoring in Liquid Phase Oxidation Over MWNT-Mn ₃ O ₄ Nanocomposite Catalysts. Journal of Physical Chemistry C, 2011, 115, 15440-15448.	1.5	26
64	Structure and Gas Sorption Behavior of a New Three Dimensional Porous Magnesium Formate. Inorganic Chemistry, 2011, 50, 1392-1401.	1.9	39
65	Porous Nitrogen Rich Cadmium-Tetrazolate Based Metal Organic Framework (MOF) for H ₂ and CO ₂ Uptake. Crystal Growth and Design, 2011, 11, 5176-5181.	1.4	54
66	Template induced structural isomerism and enhancement of porosity in manganese(ii) based metal–organic frameworks (Mn-MOFs). Chemical Communications, 2011, 47, 7674.	2.2	69
67	Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chemical Communications, 2011, 47, 2011-2013.	2.2	218
68	Structural and Selective Gas Adsorption Studies of Polyoxometalate and Tris(ethylenediamine) Cobalt(III) Based Ionic Crystals. Crystal Growth and Design, 2011, 11, 139-146.	1.4	33
69	Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth and Design, 2011, 11, 1215-1222.	1.4	101
70	Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks. Chemistry of Materials, 2011, 23, 2908-2916.	3.2	79
71	Structural, Magnetic, and Gas Adsorption Study of a Series of Partially Fluorinated Metalâ^'Organic Frameworks (H <i>F</i> -MOFs). Inorganic Chemistry, 2011, 50, 3855-3865.	1.9	88
72	Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs). Journal of Materials Chemistry, 2011, 21, 17737.	6.7	54

#	Article	IF	CITATIONS
73	Structural Diversity in Partially Fluorinated Metal Organic Frameworks (F-MOFs) Composed of Divalent Transition Metals, 1,10-Phenanthroline, and Fluorinated Carboxylic Acid. Crystal Growth and Design, 2010, 10, 1351-1363.	1.4	52
74	Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites. Journal of Materials Chemistry, 2010, 20, 9073.	6.7	140
75	Synthesis and structural comparisons of five new fluorinated metal organic frameworks (F-MOFs). CrystEngComm, 2010, 12, 1600.	1.3	57
76	Structural diversity in a series of metal–organic frameworks (MOFs) composed of divalent transition metals, 4,4′-bipyridine and a flexible carboxylic acid. CrystEngComm, 2010, 12, 2381.	1.3	48
77	Structural, Magnetic, and Gas Adsorption Study of a Two-Dimensional Tetrazole-Pyrimidine Based Metalâ^'Organic Framework. Crystal Growth and Design, 2010, 10, 2475-2478.	1.4	48