
Luca Labate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bremsstrahlung cannon design for shock ignition relevant regime. Review of Scientific Instruments, 2021, 92, 013501.	1.3	7
2	Overview and specifications of laser and target areas at the Intense Laser Irradiation Laboratory. High Power Laser Science and Engineering, 2021, 9, .	4.6	3
3	Fabrication of ZnO-nanowire-coated thin-foil targets for ultra-high intensity laser interaction experiments. Matter and Radiation at Extremes, 2021, 6, .	3.9	6
4	Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma. Scientific Reports, 2021, 11, 13728.	3.3	14
5	Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition. High Energy Density Physics, 2020, 36, 100796.	1.5	19
6	Toward an effective use of laser-driven very high energy electrons for radiotherapy: Feasibility assessment of multi-field and intensity modulation irradiation schemes. Scientific Reports, 2020, 10, 17307.	3.3	36
7	Optical and spectroscopic study of a supersonic flowing helium plasma: energy transport in the afterglow. Scientific Reports, 2020, 10, 5087.	3.3	6
8	Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO ₂ nanotube array targets. Plasma Physics and Controlled Fusion, 2020, 62, 114001.	2.1	15
9	Intense proton acceleration in ultrarelativistic interaction with nanochannels. Physical Review Research, 2020, 2, .	3.6	18
10	Numerical simulation of novel concept 4D cardiac microtomography for small rodents based on all-optical Thomson scattering X-ray sources. Scientific Reports, 2019, 9, 8439.	3.3	8
11	New thick silicon carbide detectors: Response to 14 MeV neutrons and comparison with single-crystal diamonds. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 946, 162637.	1.6	18
12	Nuclear fragment identification with <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" id="d1e1454" altimg="si68.gif"><mml:mi>î"</mml:mi></mml:math> E-E telescopes exploiting silicon carbide detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 925,	1.6	14
13	60-69. A viable laser driver for a user plasma accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 58-66.	1.6	20
14	Light Ion Accelerating Line (L3IA): Test experiment at ILIL-PW. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 160-163.	1.6	8
15	SiCILIA—Silicon Carbide Detectors for Intense Luminosity Investigations and Applications. Sensors, 2018, 18, 2289.	3.8	51
16	Horizon 2020 EuPRAXIA design study. Journal of Physics: Conference Series, 2017, 874, 012029.	0.4	60
17	The resonant multi-pulse ionization injection. Physics of Plasmas, 2017, 24, .	1.9	36
18	A New Line for Laser-Driven Light Ions Acceleration and Related TNSA Studies. Applied Sciences (Switzerland), 2017, 7, 984.	2.5	18

Luca Labate

#	Article	IF	CITATIONS
19	Inverse Compton Scattering X-ray Sources. , 2017, , 309-324.		3
20	Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability. Radiation Research, 2016, 186, 245-253.	1.5	21
21	LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples. Journal Physics D: Applied Physics, 2016, 49, 275401.	2.8	8
22	Investigation on laser–plasma coupling in intense, ultrashort irradiation of a nanostructured silicon target. Plasma Physics and Controlled Fusion, 2014, 56, 095001.	2.1	36
23	Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets. Physical Review Letters, 2013, 111, 185001.	7.8	100
24	Acceleration with self-injection for an all-optical radiation source at LNF. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 202-209.	1.4	15
25	Spatially resolved analysis ofKαx-ray emission from plasmas induced by a femtosecond weakly relativistic laser pulse at various polarizations. Physical Review E, 2013, 87, 023103.	2.1	12
26	A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion. Review of Scientific Instruments, 2012, 83, 103504.	1.3	9
27	Experimental investigation of fast electron transport through Kα imaging and spectroscopy in relativistic laser–solid interactions. Plasma Physics and Controlled Fusion, 2009, 51, 014007.	2.1	20
28	Linear and Nonlinear Thomson Scattering for Advanced X-ray Sources in PLASMONX. IEEE Transactions on Plasma Science, 2008, 36, 1782-1789.	1.3	35
29	Study of forward accelerated fast electrons in ultrashort Ti K α sources. Applied Physics B: Lasers and Optics, 2007, 86, 229-233.	2.2	27