Sergei Nechaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779583/publications.pdf

Version: 2024-02-01

687363 940533 2,814 16 13 16 citations h-index g-index papers 16 16 16 3175 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genetics, 2007, 39, 1512-1516.	21.4	671
2	RNA polymerase is poised for activation across the genome. Nature Genetics, 2007, 39, 1507-1511.	21.4	661
3	Global Analysis of Short RNAs Reveals Widespread Promoter-Proximal Stalling and Arrest of Pol II in <i>Drosophila</i> . Science, 2010, 327, 335-338.	12.6	373
4	NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes and Development, 2008, 22, 1921-1933.	5.9	256
5	Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 34-45.	1.9	217
6	Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin. Molecular Cell, 2015, 58, 1101-1112.	9.7	204
7	Stable Pausing by RNA Polymerase II Provides an Opportunity to Target and Integrate Regulatory Signals. Molecular Cell, 2013, 52, 517-528.	9.7	203
8	Promoter-proximal Pol II: When stalling speeds things up. Cell Cycle, 2008, 7, 1539-1544.	2.6	74
9	The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Molecular Cell, 2019, 75, 683-699.e7.	9.7	50
10	PARP-1/2 Inhibitor Olaparib Prevents or Partially Reverts EMT Induced by TGF- \hat{l}^2 in NMuMG Cells. International Journal of Molecular Sciences, 2019, 20, 518.	4.1	30
11	RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. Nucleic Acids Research, 2015, 43, 3938-3949.	14.5	24
12	Epigenetic Modulation of Microglial Inflammatory Gene Loci in Helminth-Induced Immune Suppression. ASN Neuro, 2015, 7, 175909141559212.	2.7	20
13	RNA polymerase II pausing as a context-dependent reader of the genome. Biochemistry and Cell Biology, 2016, 94, 82-92.	2.0	19
14	Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics, 2019, 20, 477.	2.8	8
15	Analysis of paired end Pol II ChIP-seq and short capped RNA-seq in MCF-7 cells. Genomics Data, 2015, 5, 263-267.	1.3	3
16	Targeting the Transcriptome Through Globally Acting Components. Frontiers in Genetics, 2021, 12, 749850.	2.3	1