
Suzana Camargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 2007, 20, 4819-4834.	1.2	627
2	Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate, 2005, 18, 2996-3006.	1.2	582
3	Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 2020, 101, E303-E322.	1.7	573
4	Coastal flooding by tropical cyclones and sea-level rise. Nature, 2013, 504, 44-52.	13.7	542
5	Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 65-89.	3.6	471
6	Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 2019, 100, 1987-2007.	1.7	326
7	Diagnosis of the MJO Modulation of Tropical Cyclogenesis Using an Empirical Index. Journals of the Atmospheric Sciences, 2009, 66, 3061-3074.	0.6	310
8	Human influence on tropical cyclone intensity. Science, 2016, 353, 242-246.	6.0	286
9	Understanding and managing connected extreme events. Nature Climate Change, 2020, 10, 611-621.	8.1	273
10	Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5 Models. Journal of Climate, 2013, 26, 9880-9902.	1.2	269
11	Climate Modulation of North Atlantic Hurricane Tracks. Journal of Climate, 2010, 23, 3057-3076.	1.2	265
12	Cluster Analysis of Typhoon Tracks. Part II: Large-Scale Circulation and ENSO. Journal of Climate, 2007, 20, 3654-3676.	1.2	261
13	Cluster Analysis of Typhoon Tracks. Part I: General Properties. Journal of Climate, 2007, 20, 3635-3653.	1.2	260
14	North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections*. Journal of Climate, 2014, 27, 2230-2270.	1.2	231
15	A Poisson Regression Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis. Journal of Climate, 2011, 24, 2335-2357.	1.2	195
16	Past and Projected Changes in Western North Pacific Tropical Cyclone Exposure. Journal of Climate, 2016, 29, 5725-5739.	1.2	178
17	Tropical cyclone genesis potential index in climate models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 428-443.	0.8	168
18	State of the Climate in 2018. Bulletin of the American Meteorological Society, 2019, 100, Si-S306.	1.7	168

#	Article	IF	CITATIONS
19	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	1.7	160
20	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	1.7	158
21	A Climatology of Arabian Sea Cyclonic Storms. Journal of Climate, 2011, 24, 140-158.	1.2	150
22	The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model. Journal of Climate, 2012, 25, 4641-4659.	1.2	148
23	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	1.7	142
24	Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dynamics, 2007, 29, 423-440.	1.7	138
25	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	1.7	138
26	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	1.7	135
27	CMIP5 Projected Changes in the Annual Cycle of Precipitation in Monsoon Regions. Journal of Climate, 2013, 26, 7328-7351.	1.2	132
28	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	1.7	132
29	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	1.7	129
30	North American Climate in CMIP5 Experiments. Part II: Evaluation of Historical Simulations of Intraseasonal to Decadal Variability. Journal of Climate, 2013, 26, 9247-9290.	1.2	124
31	Improving the Detection and Tracking of Tropical Cyclones in Atmospheric General Circulation Models. Weather and Forecasting, 2002, 17, 1152-1162.	0.5	123
32	State of the Climate in 2009. Bulletin of the American Meteorological Society, 2010, 91, s1-s222.	1.7	121
33	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	1.7	121
34	Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	116
35	Resistive driftâ€wave turbulence. Physics of Plasmas, 1995, 2, 48-62.	0.7	115
36	Onset and End of the Rainy Season in South America in Observations and the ECHAM 4.5 Atmospheric General Circulation Model. Journal of Climate, 2007, 20, 2037-2050.	1.2	114

#	Article	IF	CITATIONS
37	Characteristics of tropical cyclones in highâ€resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 2014, 6, 1154-1172.	1.3	111
38	Testing the Performance of Tropical Cyclone Genesis Indices in Future Climates Using the HiRAM Model. Journal of Climate, 2014, 27, 9171-9196.	1.2	109
39	Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dynamics, 2012, 39, 897-917.	1.7	105
40	RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Climate Dynamics, 2007, 28, 461-480.	1.7	102
41	Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature Communications, 2016, 7, 10625.	5.8	95
42	The Role of the Sahara Low in Summertime Sahel Rainfall Variability and Change in the CMIP3 Models. Journal of Climate, 2009, 22, 5755-5771.	1.2	94
43	Enhanced spring convective barrier for monsoons in a warmer world?. Climatic Change, 2011, 104, 403-414.	1.7	94
44	An Environmentally Forced Tropical Cyclone Hazard Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 223-241.	1.3	93
45	Tracking Scheme Dependence of Simulated Tropical Cyclone Response to Idealized Climate Simulations. Journal of Climate, 2014, 27, 9197-9213.	1.2	86
46	Role of Radiative–Convective Feedbacks in Spontaneous Tropical Cyclogenesis in Idealized Numerical Simulations. Journals of the Atmospheric Sciences, 2016, 73, 2633-2642.	0.6	85
47	Tropical cyclones in climate models. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 211-237.	3.6	85
48	Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?. Climate Dynamics, 2018, 50, 705-715.	1.7	84
49	The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dynamics, 2009, 32, 125-141.	1.7	82
50	Association of U.S. tornado occurrence with monthly environmental parameters. Geophysical Research Letters, 2012, 39, .	1.5	82
51	Projected changes in the physical climate of the Gulf Coast and Caribbean. Climatic Change, 2012, 112, 819-845.	1.7	81
52	The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone Activity. Journal of Climate, 2018, 31, 5395-5416.	1.2	80
53	The Effect of Regional Climate Model Domain Choice on the Simulation of Tropical Cyclone–Like Vortices in the Southwestern Indian Ocean. Journal of Climate, 2005, 18, 1263-1274.	1.2	79
54	Past and Future Hurricane Intensity Change along the U.S. East Coast. Scientific Reports, 2019, 9, 7795.	1.6	79

#	Article	IF	CITATIONS
55	Revisiting the Influence of the Quasi-Biennial Oscillation on Tropical Cyclone Activity. Journal of Climate, 2010, 23, 5810-5825.	1.2	78
56	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	1.7	78
57	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009, 90, S1-S196.	1.7	74
58	Projected Future Seasonal Changes in Tropical Summer Climate. Journal of Climate, 2011, 24, 473-487.	1.2	74
59	Classifying North Atlantic Tropical Cyclone Tracks by Mass Moments*. Journal of Climate, 2009, 22, 5481-5494.	1.2	70
60	Hurricane track variability and secular potential intensity trends. Climatic Change, 2009, 97, 329-337.	1.7	69
61	Statistical–Dynamical Downscaling Projections of Tropical Cyclone Activity in a Warming Climate: Two Diverging Genesis Scenarios. Journal of Climate, 2020, 33, 4815-4834.	1.2	69
62	State of the Climate in 2003. Bulletin of the American Meteorological Society, 2004, 85, 881-881.	1.7	68
63	Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment. Journals of the Atmospheric Sciences, 2005, 62, 3396-3407.	0.6	65
64	A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 589-604.	0.8	64
65	Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI. Weather and Forecasting, 2009, 24, 472-491.	0.5	64
66	Declining tropical cyclone frequency under global warming. Nature Climate Change, 2022, 12, 655-661.	8.1	64
67	Subseasonal Tropical Cyclone Genesis Prediction and MJO in the S2S Dataset. Weather and Forecasting, 2018, 33, 967-988.	0.5	62
68	An Empirical Relation between U.S. Tornado Activity and Monthly Environmental Parameters. Journal of Climate, 2014, 27, 2983-2999.	1.2	60
69	Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophysical Research Letters, 2007, 34, .	1.5	59
70	Impact of the Tropopause Temperature on the Intensity of Tropical Cyclones: An Idealized Study Using a Mesoscale Model. Journals of the Atmospheric Sciences, 2014, 71, 4333-4348.	0.6	59
71	Tropical cyclones and climate change. Tropical Cyclone Research and Review, 2019, 8, 240-250.	1.0	57
72	Tropical Cyclone Genesis Factors in Simulations of the Last Glacial Maximum. Journal of Climate, 2012, 25, 4348-4365.	1.2	55

#	Article	IF	CITATIONS
73	The Influence of Natural Climate Variability on Tropical Cyclones, and Seasonal Forecasts of Tropical Cyclone Activity. World Scientific Series on Asia-Pacific Weather and Climate, 2010, , 325-360.	0.2	55
74	Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9721-9744.	1.2	54
75	Variations in Tropical Cyclone Genesis Factors in Simulations of the Holocene Epoch. Journal of Climate, 2012, 25, 8196-8211.	1.2	51
76	Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Climate Dynamics, 2013, 40, 1515-1529.	1.7	51
77	Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks. Journal of Climate, 2015, 28, 1333-1361.	1.2	51
78	A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 589-604.	0.8	48
79	Domain choice in an experimental nested modeling prediction system for South America. Theoretical and Applied Climatology, 2006, 86, 229-246.	1.3	48
80	Monsoon Responses to Climate Changes—Connecting Past, Present and Future. Current Climate Change Reports, 2019, 5, 63-79.	2.8	48
81	The influence of magnetic fluctuations on collisional driftâ€wave turbulence. Physics of Plasmas, 1996, 3, 3912-3931.	0.7	46
82	Tropical Cyclone Frequency. Earth's Future, 2021, 9, .	2.4	46
83	Environmental control of tropical cyclones in CMIP5: A ventilation perspective. Journal of Advances in Modeling Earth Systems, 2014, 6, 115-128.	1.3	45
84	How Well Do Global Climate Models Simulate the Variability of Atlantic Tropical Cyclones Associated with ENSO?. Journal of Climate, 2014, 27, 5673-5692.	1.2	45
85	Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity. Monthly Weather Review, 2015, 143, 933-954.	0.5	45
86	A Global Climatology of Extratropical Transition. Part I: Characteristics across Basins. Journal of Climate, 2019, 32, 3557-3582.	1.2	42
87	Characteristics of Model Tropical Cyclone Climatology and the Large-Scale Environment. Journal of Climate, 2020, 33, 4463-4487.	1.2	42
88	State of the Climate in 2005. Bulletin of the American Meteorological Society, 2006, 87, s1-s102.	1.7	39
89	Regional Climate Model–Simulated Timing and Character of Seasonal Rains in South America. Monthly Weather Review, 2007, 135, 2642-2657.	0.5	37
90	Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model. International Journal of Climatology, 2007, 27, 311-325.	1.5	37

#	Article	IF	CITATIONS
91	Variations in the Intensity and Spatial Extent of Tropical Cyclone Precipitation. Geophysical Research Letters, 2019, 46, 13992-14002.	1.5	37
92	Tropical cyclone activity affected by volcanically induced ITCZ shifts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7732-7737.	3.3	37
93	State of the Climate in 2007. Bulletin of the American Meteorological Society, 2008, 89, S1-S179.	1.7	36
94	Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models*. Journal of Climate, 2015, 28, 3926-3942.	1.2	36
95	A Genesis Index for Monsoon Disturbances. Journal of Climate, 2016, 29, 5189-5203.	1.2	36
96	Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bulletin of the American Meteorological Society, 2019, 100, 1665-1686.	1.7	36
97	State of the Climate in 2002. Bulletin of the American Meteorological Society, 2003, 84, 800-800.	1.7	36
98	STATE OF THE CLIMATE IN 2004. Bulletin of the American Meteorological Society, 2005, 86, S1-S86.	1.7	35
99	Two summers of São Paulo drought: Origins in the western tropical Pacific. Geophysical Research Letters, 2015, 42, 10,816.	1.5	34
100	Renormalization group in magnetohydrodynamic turbulence. Physics of Fluids B, 1992, 4, 1199-1212.	1.7	32
101	On the Variability and Predictability of Eastern Pacific Tropical Cyclone Activity*. Journal of Climate, 2015, 28, 9678-9696.	1.2	32
102	The persistent signature of tropical cyclones in ambient seismic noise. Earth and Planetary Science Letters, 2018, 484, 287-294.	1.8	32
103	Effects of climate change on the movement of future landfalling Texas tropical cyclones. Nature Communications, 2020, 11, 3319.	5.8	32
104	An Assessment of Multimodel Simulations for the Variability of Western North Pacific Tropical Cyclones and Its Association with ENSO. Journal of Climate, 2016, 29, 6401-6423.	1.2	31
105	Subseasonal to Seasonal Prediction of Weather to Climate with Application to Tropical Cyclones. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2018JD029375.	1.2	31
106	Climate Assessment for 2001. Bulletin of the American Meteorological Society, 2002, 83, 938-938.	1.7	31
107	Stratified statistical models of North Atlantic basinâ€wide and regional tropical cyclone counts. Journal of Geophysical Research, 2012, 117, .	3.3	30
108	Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate Models. Journal of Climate, 2019, 32, 6071-6095.	1.2	30

7

#	Article	IF	CITATIONS
109	Impact of ocean warming on tropical cyclone track over the western north pacific: A numerical investigation based on two case studies. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8617-8630.	1.2	29
110	Advances in the Subseasonal Prediction of Extreme Events: Relevant Case Studies across the Globe. Bulletin of the American Meteorological Society, 2022, 103, E1473-E1501.	1.7	29
111	Process-Oriented Diagnosis of Tropical Cyclones in High-Resolution GCMs. Journal of Climate, 2018, 31, 1685-1702.	1.2	28
112	Western North Pacific Tropical Cyclone Tracks in CMIP5 Models: Statistical Assessment Using a Model-Independent Detection and Tracking Scheme. Journal of Climate, 2019, 32, 7191-7208.	1.2	28
113	Reanalysis of climate influences on Atlantic tropical cyclone activity using cluster analysis. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4258-4280.	1.2	27
114	Projected Twenty-First-Century Changes in the Length of the Tropical Cyclone Season. Journal of Climate, 2015, 28, 6181-6192.	1.2	26
115	Tropical Cyclone Prediction on Subseasonal Time-Scales. Tropical Cyclone Research and Review, 2019, 8, 150-165.	1.0	26
116	Autoregressive Modeling for Tropical Cyclone Intensity Climatology. Journal of Climate, 2016, 29, 7815-7830.	1.2	25
117	Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2004, 56, 56-67.	0.8	23
118	Spectral properties and statistics of resistive drift-wave turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 186, 239-244.	0.9	22
119	Subseasonal Predictions of Tropical Cyclone Occurrence and ACE in the S2S Dataset. Weather and Forecasting, 2020, 35, 921-938.	0.5	22
120	Nonmodal energetics of resistive drift waves. Physical Review E, 1998, 58, 3693-3704.	0.8	21
121	Azimuthally Averaged Wind and Thermodynamic Structures of Tropical Cyclones in Global Climate Models and Their Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 1575-1595.	1.2	20
122	Supplement to State of the Climate in 2006. Bulletin of the American Meteorological Society, 2007, 88, S1-S135.	1.7	19
123	A Global Climatology of Extratropical Transition. Part II: Statistical Performance of the Cyclone Phase Space. Journal of Climate, 2019, 32, 3583-3597.	1.2	18
124	Tropical Cyclone Hazard to Mumbai in the Recent Historical Climate. Monthly Weather Review, 2019, 147, 2355-2366.	0.5	18
125	Aerosol versus Greenhouse Gas Effects on Tropical Cyclone Potential Intensity and the Hydrologic Cycle. Journal of Climate, 2019, 32, 5511-5527.	1.2	17
126	Dynamical downscaling of tropical cyclones from CCSM4 simulations of the Last Glacial Maximum. Journal of Advances in Modeling Earth Systems, 2016, 8, 1229-1247.	1.3	16

#	Article	IF	CITATIONS
127	Increased tropical cyclone risk to coasts. Science, 2021, 371, 458-459.	6.0	16
128	Formation of tropical storms in an atmospheric general circulation model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 56.	0.8	15
129	Role of the Convection Scheme in Modeling Initiation and Intensification of Tropical Depressions over the North Atlantic. Monthly Weather Review, 2017, 145, 1495-1509.	0.5	15
130	The Importance of the Montreal Protocol in Mitigating the Potential Intensity of Tropical Cyclones. Journal of Climate, 2016, 29, 2275-2289.	1.2	14
131	A Statistical Assessment of Southern Hemisphere Tropical Cyclone Tracks in Climate Models. Journal of Climate, 2018, 31, 10081-10104.	1.2	13
132	Little evidence of reduced global tropical cyclone activity following recent volcanic eruptions. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	13
133	Application of the Cyclone Phase Space to Extratropical Transition in a Global Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001878.	1.3	13
134	Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883. Atmospheric Chemistry and Physics, 2020, 20, 13687-13700.	1.9	13
135	Northern hemisphere tropical cyclones during the quasi-El Niño of late 2014. Natural Hazards, 2016, 83, 1717-1729.	1.6	12
136	Summary of workshop on sub-seasonal to seasonal predictability of extreme weather and climate. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	12
137	Tropical cyclones in the GISS ModelE2. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 31494.	0.8	11
138	Atlantic hurricane response to Saharan greening and reduced dust emissions during the mid-Holocene. Climate of the Past, 2021, 17, 675-701.	1.3	9
139	A Quantitative Method to Evaluate Tropical Cyclone Tracks in Climate Models. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1807-1818.	0.5	8
140	Assessing Heavy Precipitation Risk Associated with Tropical Cyclones in China. Journal of Applied Meteorology and Climatology, 2022, 61, 577-591.	0.6	8
141	On the nonlinear stability of dissipative fluids. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1992, 107, 733-740.	0.2	7
142	Nonmodal energetics of electromagnetic drift waves. Physics of Plasmas, 2000, 7, 2849-2855.	0.7	7
143	Skill, Predictability, and Cluster Analysis of Atlantic Tropical Storms and Hurricanes in the ECMWF Monthly Forecasts. Monthly Weather Review, 2021, , .	0.5	7
144	Understanding differences in tropical cyclone activity over the Arabian Sea and Bay of Bengal. Mausam, 2021, 72, 187-198.	0.1	6

#	Article	IF	CITATIONS
145	Incremental Gaussian Granular Fuzzy Modeling Applied to Hurricane Track Forecasting. , 2018, , .		5
146	A New Method to Construct a Horizontal Resolutionâ€Dependent Wind Speed Adjustment Factor for Tropical Cyclones in Global Climate Model Simulations. Geophysical Research Letters, 2020, 47, e2020GL087528.	1,5	5
147	Tropical Cyclone Characteristics in the MERRAâ€2 Reanalysis and AMIP Simulations. Earth and Space Science, 2021, 8, e2020EA001415.	1.1	5
148	Workshop on Tropical Cyclones and Climate. Bulletin of the American Meteorological Society, 2007, 88, 389-391.	1.7	4
149	Are Midtwentieth Century Forced Changes in North Atlantic Hurricane Potential Intensity Detectable?. Geophysical Research Letters, 2019, 46, 3378-3386.	1.5	4
150	The Tropics. Bulletin of the American Meteorological Society, 2020, 101, S185-S238.	1.7	4
151	A Statistical Model to Predict the Extratropical Transition of Tropical Cyclones. Weather and Forecasting, 2020, 35, 451-466.	0.5	4
152	New York State Hurricane Hazard: History and Future Projections. Journal of Applied Meteorology and Climatology, 2022, 61, 613-629.	0.6	3
153	Self-Similar Statistics in MHD Turbulence. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1990, 45, 603-608.	0.7	2
154	Average magnetic surfaces in tokamaks. Plasma Physics and Controlled Fusion, 1991, 33, 573-581.	0.9	2
155	Self-consistent equilibrium calculation through a direct variational technique in tokamak plasmas. Plasma Physics and Controlled Fusion, 2000, 42, 1269-1289.	0.9	2
156	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	1.7	2
157	Heavy Rain-producing Terrestrial Low-Pressure Systems Over East Asian Summer Monsoon Region: Evolution, Energetics, and Trend. Journal of Climate, 2021, , 1-40.	1.2	2
158	Tropical cyclone genesis potential index in climate models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, , .	0.8	2
159	Evolution of Tropical Cyclone Properties Across the Development Cycle of the GISS‣3 Global Climate Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
160	Skill of the Saudi-KAU CGCM in Forecasting ENSO and its Comparison with NMME and C3S Models. Earth Systems and Environment, 2022, 6, 327.	3.0	2
161	Hottest summers the new normal. Environmental Research Letters, 2016, 11, 081001.	2.2	1
162	The Tropics. Bulletin of the American Meteorological Society, 2021, 102, S199-S262.	1.7	1

#	Article	IF	CITATIONS
163	Enhanced spring convective barrier for monsoons in a warmer world?. , 2011, 104, 403.		1
164	Tropical Cyclones Warming World: An Assessment of Projections. Bulletin of the American Meteorological Society, 2020, 101, 771-774.	1.7	1
165	Nonmodal linear analysis of drift-wave turbulence models. European Physical Journal D, 1998, 48, 189-194.	0.4	Ο
166	Extreme Weather and Climate: Workshop Report. Journal of Extreme Events, 2016, 03, 1671001.	1.2	0
167	Thank You to Our 2018 Peer Reviewers. Geophysical Research Letters, 2019, 46, 12608-12636.	1.5	0
168	Thank You to Our 2019 Peer Reviewers. Geophysical Research Letters, 2020, 47, e2020GL088048.	1.5	0
169	Thank You to Our 2020 Peer Reviewers. Geophysical Research Letters, 2021, 48, e2021GL093126.	1.5	Ο
170	Understanding differences in tropical cyclone activity over the Arabian Sea and Bay of Bengal. Mausam, 2021, 72, 187-198.	0.1	0
171	Thank You to Our 2021 Peer Reviewers. Geophysical Research Letters, 2022, 49, .	1.5	Ο