Joachim Reuder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2779004/publications.pdf

Version: 2024-02-01

218677 276875 2,228 98 26 41 citations g-index h-index papers 119 119 119 2507 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Downscaling an intense precipitation event in complex terrain: the importance of high grid resolution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1271561.	1.7	35
2	Development of an automatic thresholding method for wake meandering studies and its application to the data set from scanning wind lidar. Wind Energy Science, 2022, 7, 849-873.	3.3	3
3	Characterization of Terrain-Induced Turbulence by Large-Eddy Simulation for Air Safety Considerations in Airport Siting. Atmosphere, 2022, 13, 952.	2.3	2
4	An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in <scp>ERA5</scp> reanalysis: The impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 691-712.	2.7	43
5	The Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Project (ISOBAR): Unique Finescale Observations under Stable and Very Stable Conditions. Bulletin of the American Meteorological Society, 2021, 102, E218-E243.	3.3	23
6	Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part I – Integral flow characteristics. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211, 104584.	3.9	1
7	Potential and challenges of wind measurements using met-masts in complex topography for bridge design: Part II – Spectral flow characteristics. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211, 104585.	3.9	5
8	Quantifying the Stable Water Isotopologue Exchange Between the Snow Surface and Lower Atmosphere by Direct Flux Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034400.	3.3	20
9	The COTUR project: remote sensing of offshore turbulence for wind energy application. Atmospheric Measurement Techniques, 2021, 14, 6137-6157.	3.1	9
10	Unmanned Aircraft Systems. Springer Handbooks, 2021, , 1331-1349.	0.6	4
11	Potential and Limitations in Estimating Sensible-Heat-Flux Profiles from Consecutive Temperature Profiles Using Remotely-Piloted Aircraft Systems. Boundary-Layer Meteorology, 2020, 174, 145-177.	2.3	10
12	Statistic and Coherence Response of Ship-based Lidar Observations to Motion Compensation. Journal of Physics: Conference Series, 2020, 1669, 012020.	0.4	2
13	Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines. Wind Energy, 2020, 23, 1810-1830.	4.2	46
14	Scaling the Decay of Turbulence Kinetic Energy in the Free-Convective Boundary Layer. Boundary-Layer Meteorology, 2019, 173, 79-97.	2.3	13
15	Wind Stress in the Coastal Zone: Observations from a Buoy in Southwestern Norway. Atmosphere, 2019, 10, 491.	2.3	O
16	A new roughness length parameterization accounting for wind–wave (mis)alignment. Atmospheric Chemistry and Physics, 2019, 19, 6681-6700.	4.9	21
17	Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors, 2019, 19, 2179.	3.8	88
18	Processing of sonic anemometer measurements for offshore wind turbine applications. Journal of Physics: Conference Series, 2019, 1356, 012006.	0.4	9

#	Article	IF	CITATIONS
19	The Iceland Greenland Seas Project. Bulletin of the American Meteorological Society, 2019, 100, 1795-1817.	3.3	21
20	The Role of Roughness and Stability on the Momentum Flux in the Marine Atmospheric Surface Layer: A Study on the Southwestern Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3914-3932.	3.3	11
21	Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs. Ocean Dynamics, 2018, 68, 109-130.	2.2	7
22	Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISOBAR)â€"The Hailuoto 2017 Campaign. Atmosphere, 2018, 9, 268.	2.3	45
23	Improving Quantitative Rainfall Prediction Using Ensemble Analogues in the Tropics: Case Study of Uganda. Atmosphere, 2018, 9, 328.	2.3	18
24	Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2018, 169, 429-460.	2.3	44
25	Assessing the potential of a commercial pulsed lidar for wind characterisation at a bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 161, 17-26.	3.9	23
26	A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO \$\$_2\$\$ 2. Boundary-Layer Meteorology, 2017, 165, 211-231.	2.3	5
27	On the Formulation and Universality of Monin–Obukhov Similarity Functions for Mean Gradients and Standard Deviations in the Unstable Surface Layer: Results from Surface-Layer-Resolving Large-Eddy Simulations. Journals of the Atmospheric Sciences, 2017, 74, 989-1010.	1.7	33
28	Offshore Wind Turbine Wake characteristics using Scanning Doppler Lidar. Energy Procedia, 2017, 137, 428-442.	1.8	11
29	2D VAR single Doppler lidar vector retrieval and its application in offshore wind energy. Energy Procedia, 2017, 137, 497-504.	1.8	7
30	Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study. Atmospheric Chemistry and Physics, 2017, 17, 7261-7276.	4.9	19
31	The large-scale circulation during air quality hazards in Bergen, Norway. Tellus, Series A: Dynamic Meteorology and Oceanography, 2017, 69, 1406265.	1.7	5
32	Characterization of Turbulence in Wind Turbine Wakes under Different Stability Conditions from Static Doppler LiDAR Measurements. Remote Sensing, 2017, 9, 242.	4.0	6
33	Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign. Atmospheric Measurement Techniques, 2016, 9, 2675-2688.	3.1	15
34	Patterns of Dekadal Rainfall Variation Over a Selected Region in Lake Victoria Basin, Uganda. Atmosphere, 2016, 7, 150.	2.3	18
35	Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign. Atmospheric Measurement Techniques, 2016, 9, 4901-4913.	3.1	28
36	Proof of Concept for Wind Turbine Wake Investigations with the RPAS SUMO. Energy Procedia, 2016, 94, 452-461.	1.8	9

#	Article	IF	CITATIONS
37	Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications. Renewable Energy, 2016, 99, 898-910.	8.9	61
38	Automated measurements of whitecaps on the ocean surface from a buoy-mounted camera. Methods in Oceanography, 2016, 17, 14-31.	1.6	8
39	Wind Coherence Measurement by a Single Pulsed Doppler Wind Lidar. Energy Procedia, 2016, 94, 462-477.	1.8	11
40	Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmospheric Chemistry and Physics, 2016, 16, 9489-9504.	4.9	32
41	Comparison of Direct Covariance Flux Measurements from an Offshore Tower and a Buoy. Journal of Atmospheric and Oceanic Technology, 2016, 33, 873-890.	1.3	16
42	Assessment of Wind Conditions at a Fjord Inlet by Complementary Use of Sonic Anemometers and Lidars. Energy Procedia, 2015, 80, 411-421.	1.8	4
43	Lagrangian Measurement of Waves and Near Surface Turbulence from Acoustic Instruments. Energy Procedia, 2015, 80, 141-150.	1.8	2
44	Characterisation of Single Wind Turbine Wakes with Static and Scanning WINTWEX-W LiDAR Data. Energy Procedia, 2015, 80, 245-254.	1.8	27
45	Lifted temperature minimum during the atmospheric evening transition. Atmospheric Chemistry and Physics, 2015, 15, 6981-6991.	4.9	4
46	Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings. Atmospheric Chemistry and Physics, 2015, 15, 4241-4257.	4.9	27
47	Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications— Part I: Average wind speed and wind shear. Wind Energy, 2015, 18, 769-782.	4.2	26
48	Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applicationsâ€"part II: boundary layer height and atmospheric stability. Wind Energy, 2015, 18, 1291-1302.	4.2	21
49	Analysis of the vertical temperature structure in the Bergen valley, Norway, and its connection to pollution episodes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,645.	3.3	33
50	Characterization of the SUMO Turbulence Measurement System for Wind Turbine Wake Assessment. Energy Procedia, 2014, 53, 173-183.	1.8	9
51	The influence of Nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6537-6548.	3.3	7
52	The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmospheric Chemistry and Physics, 2014, 14, 10931-10960.	4.9	151
53	Analysis of a Low-level Coastal Jet off the Western Coast of Norway. Energy Procedia, 2014, 53, 162-172.	1.8	17
54	A Comparison of LiDAR and Radiosonde Wind Measurements. Energy Procedia, 2014, 53, 214-220.	1.8	37

#	Article	IF	Citations
55	Experimental Characterization of the Marine Atmospheric Boundary Layer in the Havsul Area, Norway. Energy Procedia, 2013, 35, 121-127.	1.8	9
56	Preliminary Results of the NORCOWE Direct Covariance Flux System for Ship based Measurements. Energy Procedia, 2013, 35, 128-136.	1.8	1
57	Wave–induced Characteristics of Atmospheric Turbulence Flux Measurements. Energy Procedia, 2013, 35, 102-112.	1.8	5
58	Simulations of the Bergen orographic wind shelter. Tellus, Series A: Dynamic Meteorology and Oceanography, 2013, 65, 19206.	1.7	5
59	Multi-scale variability of winds in the complex topography of southwestern Norway. Tellus, Series A: Dynamic Meteorology and Oceanography, 2012, 64, 11962.	1.7	10
60	The Near-Surface Small-Scale Spatial and Temporal Variability of Sensible and Latent Heat Exchange in the Svalbard Region: A Case Study., 2012, 2012, 1-14.		11
61	A â€~No-Flow-Sensor' Wind Estimation Algorithm for Unmanned Aerial Systems. International Journal of Micro Air Vehicles, 2012, 4, 15-29.	1.3	52
62	Banner clouds observed at Mount Zugspitze. Atmospheric Chemistry and Physics, 2012, 12, 3611-3625.	4.9	14
63	Improving High-Resolution Numerical Weather Simulations by Assimilating Data from an Unmanned Aerial System. Monthly Weather Review, 2012, 140, 3734-3756.	1.4	32
64	Sensor Movement Correction for Direct Turbulence Measurements in the Marine Atmospheric Boundary Layer. Energy Procedia, 2012, 24, 159-165.	1.8	6
65	First Results of Turbulence Measurements in a Wind Park with the Small Unmanned Meteorological Observer SUMO. Energy Procedia, 2012, 24, 176-185.	1.8	10
66	The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research. Acta Geophysica, 2012, 60, 1454-1473.	2.0	69
67	Profiling the Arctic Stable Boundary Layer in Advent Valley, Svalbard: Measurements and Simulations. Boundary-Layer Meteorology, 2012, 143, 507-526.	2.3	28
68	Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models. Meteorology and Atmospheric Physics, 2012, 116, 15-26.	2.0	66
69	FLOHOF 2007: an overview of the mesoscale meteorological field campaign at Hofsj $ ilde{A}$ ¶kull, Central Iceland. Meteorology and Atmospheric Physics, 2012, 116, 1-13.	2.0	23
70	The Norwegian IPY–THORPEX: Polar Lows and Arctic Fronts during the 2008 AndÃ,ya Campaign. Bulletin of the American Meteorological Society, 2011, 92, 1443-1466.	3.3	43
71	The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research. Meteorologische Zeitschrift, 2009, 18, 141-147.	1.0	114
72	UV radiation and skin cancer in Norway. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 232-241.	3.8	27

#	Article	IF	CITATIONS
73	SUMO: A small unmanned meteorological observer for atmospheric boundary layer research. IOP Conference Series: Earth and Environmental Science, 2008, 1, 012014.	0.3	13
74	Definition of & Definition of amp;quot; based on time lapse movies. Atmospheric Chemistry and Physics, 2007, 7, 2047-2055.	4.9	14
75	Investigations on the effect of high surface albedo on erythemally effective UV irradiance: Results of a campaign at the Salar de Uyuni, Bolivia. Journal of Photochemistry and Photobiology B: Biology, 2007, 87, 1-8.	3.8	15
76	Effects of altitude and aerosol on UV radiation. Journal of Geophysical Research, 2006, 111, .	3.3	51
77	Diurnal circulation of the South American Altiplano: observations in a valley and at a pass. Tellus, Series A: Dynamic Meteorology and Oceanography, 2006, 58, 254-262.	1.7	9
78	Diurnal circulation of the South American Altiplano: observations in a valley and at a pass. Tellus, Series A: Dynamic Meteorology and Oceanography, 2006, , .	1.7	1
79	Reconstruction of UV radiation over Southern Germany for the past decades. Meteorologische Zeitschrift, 2005, 14, 237-246.	1.0	22
80	Diurnal Circulation of the Bolivian Altiplano. Part I: Observations. Monthly Weather Review, 2005, 133, 911-924.	1.4	43
81	Cloud frequency with respect to remote sensing applications: example of Bavaria, southern Germany. International Journal of Remote Sensing, 2005, 26, 4733-4745.	2.9	1
82	Visualization of UV exposure of the human body based on data from a scanning UV-measuring system. International Journal of Biometeorology, 2004, 49, 18-25.	3.0	37
83	A Two-Axis Tracking System with Datalogger. Journal of Atmospheric and Oceanic Technology, 2004, 21, 975-979.	1.3	2
84	Simplified Calibration for Broadband Solar Ultraviolet Radiation Measurements¶. Photochemistry and Photobiology, 2003, 78, 603-606.	2.5	0
85	Simplified Calibration for Broadband Solar Ultraviolet Radiation Measurements¶. Photochemistry and Photobiology, 2003, 78, 603.	2.5	8
86	Diurnal Winds in the Himalayan Kali Gandaki Valley. Part III: Remotely Piloted Aircraft Soundings. Monthly Weather Review, 2002, 130, 2042-2058.	1.4	48
87	Actinic Radiation and Photolysis Processes in the Lower Troposphere: Effect of Clouds and Aerosols. Journal of Atmospheric Chemistry, 2002, 42, 413-441.	3.2	20
88	Spectral variation of the solar radiation during an eclipse. Meteorologische Zeitschrift, 2001, 10, 179-186.	1.0	45
89	Future UV radiation in Central Europe modelled from ozone scenarios. Journal of Photochemistry and Photobiology B: Biology, 2001, 61, 94-105.	3.8	18
90	Boundary layer photochemistry during a total solar eclipse. Meteorologische Zeitschrift, 2001, 10, 187-192.	1.0	21

#	Article	IF	CITATIONS
91	Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Monthly Weather Review, 2000, 128, 1106-1122.	1.4	74
92	Aerosol effects on UV radiation in nonurban regions. Journal of Geophysical Research, 1999, 104, 4065-4077.	3.3	57
93	Photolysis Frequencies of Nitrogen Dioxide and Ozone: Measurements and Model Calculations. , 1997, , 450-456.		1
94	Bestimmung von Ozon- und NO2-Photolysefrequenzen wĤrend der Meßkampagne SANA 2: Der Einfluß von troposphäschem Aerosol. Meteorologische Zeitschrift, 1996, 5, 234-244.	1.0	8
95	Stord Orographic Precipitation Experiment (STOPEX): an overview of phase I. Advances in Geosciences, 0, 10, 17-23.	12.0	8
96	Interannual variability of air temperature inversions in ice-free area of northern James Ross Island, Antarctica. Theoretical and Applied Climatology, 0 , 1 .	2.8	0
97	A Ship-Based Characterization of Coherent Boundary-Layer Structures Over the Lifecycle of a Marine Cold-Air Outbreak. Boundary-Layer Meteorology, 0 , 1 .	2.3	1
98	Gradient-Based Turbulence Estimates from Multicopter Profiles in the Arctic Stable Boundary Layer. Boundary-Layer Meteorology, 0 , , 1 .	2.3	2