Ivan BarvÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778836/publications.pdf

Version: 2024-02-01

759233 839539 32 418 12 18 h-index citations g-index papers 33 33 33 615 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids. Organic and Biomolecular Chemistry, 2022, 20, 2889-2895.	2.8	2
2	Synthesis and cholinesterase inhibitory activity study of Amaryllidaceae alkaloid analogues with <i>N</i> -methyl substitution. Organic and Biomolecular Chemistry, 2022, 20, 3960-3966.	2.8	6
3	Fast Leaps between Millisecond Confinements Govern Ase1 Diffusion along Microtubules. Small Methods, 2021, 5, e2100370.	8.6	3
4	The torpedo effect in in Bacillus subtilis in Subtilis	7.8	27
5	Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage. Cells, 2020, 9, 57.	4.1	30
6	Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel. International Journal of Molecular Sciences, 2020, 21, 7995.	4.1	0
7	Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N- and C-Termini of TRPM4. International Journal of Molecular Sciences, 2020, 21, 4323.	4.1	6
8	The influence of coffee intake and genetics on adenosine pathway in rheumatoid arthritis. Pharmacogenomics, 2020, 21, 735-749.	1.3	6
9	Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Frontiers in Physiology, 2020, 11, 189.	2.8	14
10	Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nature Communications, 2020, 11, 6419.	12.8	22
11	Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel. International Journal of Molecular Sciences, 2019, 20, 3990.	4.1	10
12	Genetic Predispositions of Glucocorticoid Resistance and Therapeutic Outcomes in Polymyalgia Rheumatica and Giant Cell Arteritis. Journal of Clinical Medicine, 2019, 8, 582.	2.4	5
13	The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. Journal of Bacteriology, 2019, 201, .	2.2	14
14	CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5′ Capping with NAD+. Molecular Cell, 2018, 70, 553-564.e9.	9.7	64
15	Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Science Signaling, 2018, 11, .	3.6	25
16	Are haplotypes in a single methotrexate pathway more predictive for response in rheumatoid arthritis than in different pathways?. Pharmacogenomics, 2018, 19, 379-381.	1.3	0
17	Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032. Frontiers in Microbiology, 2018, 9, 3287.	3.5	13
18	Solution structure of domain 1.1 of the $\ddot{l}fA$ factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. Journal of Biological Chemistry, 2017, 292, 11610-11617.	3.4	7

#	Article	IF	CITATIONS
19	Tuning the hybridization properties of modified oligonucleotides: from flexible to conformationally constrained phosphonate internucleotide linkages. Organic and Biomolecular Chemistry, 2017, 15, 701-707.	2.8	2
20	The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel. Frontiers in Molecular Neuroscience, 2017, 10, 16.	2.9	19
21	Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiology Reviews, 2016, 41, fuw041.	8.6	20
22	Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases. Nucleic Acids Research, 2016, 44, 3000-3012.	14.5	19
23	Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins. PLoS ONE, 2015, 10, e0145918.	2.5	15
24	Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state. Neuropharmacology, 2015, 93, 294-307.	4.1	20
25	Computer Simulation of the Anisotropy of Fluorescence in Ring Molecular Systems: Influence of Disorder and Ellipticity. , 2009, , .		1
26	Title is missing!. European Physical Journal D, 2003, 53, 579-605.	0.4	15
27	Explicit Solvent Molecular Dynamics Simulation of Duplex Formed by the Modified Oligonucleotide with Alternating Phosphate/Phosphonate Internucleoside Linkages and its Natural Counterpart. Journal of Biomolecular Structure and Dynamics, 2002, 19, 863-875.	3.5	8
28	Interplay of Exciton Transfer and Relaxation. Journal of the Chinese Chemical Society, 2000, 47, 647-656.	1.4	12
29	Computer Simulation of the Exciton Transfer in the Coupled Ring Antenna Subunits of Bacteria Photosynthetic Systems. Journal of Physical Chemistry B, 1999, 103, 10892-10909.	2.6	14
30	Title is missing!. European Physical Journal D, 1998, 48, 409-415.	0.4	0
31	Coherence effects in the exciton transfer in LH2 unit. European Physical Journal D, 1998, 48, 423-434.	0.4	3
32	Molecular dynamics simulations of the oligonucleotide with the modified phosphate/phosphonate internucleotide linkage. European Physical Journal D, 1998, 48, 409-415.	0.4	4