Cristina Fillat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response to Perinatal and Adult Metabolic Demand. Cell, 2012, 151, 1595-1607.	28.9	202
2	X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood, 2010, 115, 3231-3238.	1.4	178
3	Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3136-45.	7.1	155
4	Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical Biochemistry, 1988, 173, 185-189.	2.4	141
5	DYRK1A-Dosage Imbalance Perturbs NRSF/REST Levels, Deregulating Pluripotency and Embryonic Stem Cell Fate in Down Syndrome. American Journal of Human Genetics, 2008, 83, 388-400.	6.2	139
6	Regression of Advanced Diabetic Nephropathy by Hepatocyte Growth Factor Gene Therapy in Rats. Diabetes, 2004, 53, 1119-1127.	0.6	79
7	Regulated expression of human insulin in the liver of transgenic mice corrects diabetic alterations. FASEB Journal, 1994, 8, 440-447.	0.5	75
8	Regulated Segregation of Kinase Dyrk1A during Asymmetric Neural Stem Cell Division Is Critical for EGFR-Mediated Biased Signaling. Cell Stem Cell, 2010, 7, 367-379.	11.1	71
9	Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. Journal of General Virology, 2006, 87, 2487-2495.	2.9	69
10	Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2013, 52, 117-127.	4.4	67
11	Irreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse models. Cancer Letters, 2012, 317, 16-23.	7.2	66
12	Murine models for Down syndrome. Physiology and Behavior, 2001, 73, 859-871.	2.1	62
13	Targeting Dyrk1A with AAVshRNA Attenuates Motor Alterations in TgDyrk1A, a Mouse Model of Down Syndrome. American Journal of Human Genetics, 2008, 83, 479-488.	6.2	60
14	The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers, 2020, 12, 2106.	3.7	55
15	DYRK1A modulates c-MET in pancreatic ductal adenocarcinoma to drive tumour growth. Gut, 2019, 68, 1465-1476.	12.1	52
16	Transgenic mice overexpressing the full-length neurotrophin receptor TrkC exhibit increased catecholaminergic neuron density in specific brain areas and increased anxiety-like behavior and panic reaction. Neurobiology of Disease, 2006, 24, 403-418.	4.4	50
17	Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1. PLoS ONE, 2011, 6, e17010.	2.5	42
18	DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors. Frontiers in Cellular Neuroscience, 2014, 8, 331.	3.7	39

#	Article	IF	CITATIONS
19	Stress-Induced MicroRNA-708 Impairs \hat{I}^2 -Cell Function and Growth. Diabetes, 2017, 66, 3029-3040.	0.6	39
20	Intramuscular SP1017-formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues. Journal of Gene Medicine, 2004, 6, 111-118.	2.8	36
21	Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine, 2020, 56, 102786.	6.1	35
22	DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells. Cell Reports, 2018, 23, 1867-1878.	6.4	34
23	Connexin-26 Is a Key Factor Mediating Gemcitabine Bystander Effect. Molecular Cancer Therapeutics, 2011, 10, 505-517.	4.1	33
24	MiR-148a- and miR-216a-regulated Oncolytic Adenoviruses Targeting Pancreatic Tumors Attenuate Tissue Damage Without Perturbation of miRNA Activity. Molecular Therapy, 2014, 22, 1665-1677.	8.2	33
25	Retrovirus-mediated transfer of the herpes simplex virus thymidine kinase and connexin26 genes in pancreatic cells results in variable efficiency on the bystander killing: Implications for gene therapy. International Journal of Cancer, 2001, 94, 81-88.	5.1	32
26	Urokinase-Type Plasminogen Activator Receptor Transcriptionally Controlled Adenoviruses Eradicate Pancreatic Tumors and Liver Metastasis in Mouse Models. Neoplasia, 2009, 11, 518-IN6.	5.3	31
27	Wiskott–Aldrich syndrome in a female with skewed X-chromosome inactivation. Blood Cells, Molecules, and Diseases, 2003, 31, 332-337.	1.4	30
28	Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn Down syndrome mouse model by miRNA sponges. BMC Genomics, 2015, 16, 907.	2.8	30
29	Oncolytic Adenoviruses Armed with Thymidine Kinase Can Be Traced by PET Imaging and Show Potent Antitumoural Effects by Ganciclovir Dosing. PLoS ONE, 2011, 6, e26142.	2.5	27
30	Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes and Infection, 2006, 8, 1330-1338.	1.9	26
31	Epigenetic <i>SMAD3</i> Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma. Cancer Research, 2020, 80, 276-290.	0.9	25
32	Fluorescence-Based Selection of Retrovirally Transduced Cells in the Absence of a Marker Gene: Direct Selection of Transduced Type B Niemann-Pick Disease Cells and Evidence for Bystander Correction. Human Gene Therapy, 1995, 6, 975-983.	2.7	24
33	Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Molecular Therapy, 2019, 27, 230-243.	8.2	24
34	Identification of WASP mutations in 14 Spanish families with Wiskott-Aldrich syndrome. American Journal of Medical Genetics Part A, 2001, 100, 116-121.	2.4	22
35	Implications of MicroRNAs in Oncolytic Virotherapy. Frontiers in Oncology, 2017, 7, 142.	2.8	21
36	Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts. Oncotarget, 2013, 4, 94-105.	1.8	20

#	Article	IF	CITATIONS
37	Intratumoral activation of cyclophosphamide by retroviral transfer of the cytochrome P450 2B1 in a pancreatic tumor model. Combination with the HSVtk/GCV system. Journal of Gene Medicine, 2002, 4, 141-149.	2.8	19
38	Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness. Scientific Reports, 2016, 6, 27546.	3.3	19
39	Enhancement of Gemcitabine-Induced Apoptosis by Restoration of p53 Function in Human Pancreatic Tumors. Oncology, 2005, 68, 179-189.	1.9	18
40	Cell cycle control pathways act as conditioning factors for TK/GCV sensitivity in pancreatic cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1175-1185.	4.1	18
41	Translational reprogramming in tumour cells can generate oncoselectivity in viral therapies. Nature Communications, 2017, 8, 14833.	12.8	18
42	Germline Mutations in FAF1 Are Associated With Hereditary Colorectal Cancer. Gastroenterology, 2020, 159, 227-240.e7.	1.3	18
43	Tat8–TK/GCV Suicide Gene Therapy Induces Pancreatic Tumor Regression In Vivo. Human Gene Therapy, 2005, 16, 1377-1388.	2.7	17
44	Pitfalls And Hopes in Down Syndrome Therapeutic Approaches: In the Search for Evidence-Based Treatments. Behavior Genetics, 2006, 36, 454-468.	2.1	17
45	Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells <i>in vitro</i> and <i>in vivo</i> . FASEB Journal, 2009, 23, 1366-1375.	0.5	17
46	Oligopeptide-modified poly(beta-amino ester)s-coated AdNuPARmE1A: Boosting the efficacy of intravenously administered therapeutic adenoviruses. Theranostics, 2020, 10, 2744-2758.	10.0	17
47	Mutations in <i>TIMM50</i> cause severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology. Human Mutation, 2019, 40, 1700-1712.	2.5	16
48	Late-phase miRNA-controlled oncolytic adenovirus for selective killing of cancer cells. Oncotarget, 2015, 6, 6179-6190.	1.8	16
49	A NOTCH-sensitive uPAR-regulated oncolytic adenovirus effectively suppresses pancreatic tumor growth and triggers synergistic anticancer effects with gemcitabine and nab-paclitaxel. Oncotarget, 2017, 8, 22700-22715.	1.8	15
50	Zeb1 in Stromal Myofibroblasts Promotes <i>Kras</i> -Driven Development of Pancreatic Cancer. Cancer Research, 2018, 78, 2624-2637.	0.9	15
51	MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis, 2020, 9, 43.	4.9	15
52	Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers, 2020, 12, 1034.	3.7	15
53	Epidermal growth factor inhibits phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes in primary culture. FEBS Letters, 1993, 318, 287-291.	2.8	14
54	Targeting the CYP2B1/Cyclophosphamide Suicide System to Fibroblast Growth Factor Receptors Results in a Potent Antitumoral Response in Pancreatic Cancer Models. Human Gene Therapy, 2006, 17, 1187-1200.	2.7	14

#	Article	IF	CITATIONS
55	A novel Wiskott-Aldrich syndrome protein (WASP) complex mutation identified in a WAS patient results in an aberrant product at the C-terminus from two transcripts with unusual polyA signals. Journal of Human Genetics, 2006, 51, 92-97.	2.3	12
56	The Value of Mouse Models of Rare Diseases: A Spanish Experience. Frontiers in Genetics, 2020, 11, 583932.	2.3	12
57	Adenovirus-Mediated Retinoblastoma 94 Gene Transfer Induces Human Pancreatic Tumor Regression in a Mouse Xenograft Model. Clinical Cancer Research, 2004, 10, 1454-1462.	7.0	11
58	uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors. Stem Cell Research, 2014, 12, 1-10.	0.7	11
59	Autoimmune Thyroiditis After Bone Marrow Transplantation in a Boy With Wiskott-Aldrich Syndrome. Journal of Pediatric Hematology/Oncology, 2002, 24, 772-776.	0.6	10
60	The pancreatic niche inhibits the effectiveness of sunitinib treatment of pancreatic cancer. Oncotarget, 2016, 7, 48265-48279.	1.8	10
61	Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Frontiers in Microbiology, 2021, 12, 633946.	3.5	10
62	Tissue-specific Expression and Dietary Regulation of Chimeric Mitochondrial 3-Hydroxy-3-methylglutaryl Coenzyme A Synthase/Human Growth Hormone Gene in Transgenic Mice. Journal of Biological Chemistry, 1996, 271, 7529-7534.	3.4	9
63	Positive selection of gene-modified cells increases the efficacy of pancreatic cancer suicide gene therapy. Molecular Cancer Therapeutics, 2009, 8, 3098-3107.	4.1	9
64	Overexpression of DYRK1A inhibits choline acetyltransferase induction by oleic acid in cellular models of Down syndrome. Experimental Neurology, 2013, 239, 229-234.	4.1	9
65	A genetic fiber modification to achieve matrix-metalloprotease-activated infectivity of oncolytic adenovirus. Journal of Controlled Release, 2014, 192, 148-156.	9.9	9
66	Combining Oncolytic Virotherapy and Cytotoxic Therapies to Fight Cancer. Current Pharmaceutical Design, 2014, 20, 6513-6521.	1.9	9
67	Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biology, 2022, 111, 207-225.	3.6	9
68	Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems. Cancers, 2011, 3, 368-395.	3.7	8
69	Deciphering microRNA targets in pancreatic cancer using miRComb R package. Oncotarget, 2018, 9, 6499-6517.	1.8	8
70	Insights from Mouse Models to Understand Neurodegeneration in Down Syndrome. CNS and Neurological Disorders - Drug Targets, 2010, 9, 429-438.	1.4	8
71	Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers, 2021, 13, 3233.	3.7	7
72	Antitumor Therapy Based on Cellular Competition. Human Gene Therapy, 2009, 20, 728-738.	2.7	6

#	Article	IF	CITATIONS
73	Gene therapy for Down syndrome. Progress in Brain Research, 2012, 197, 237-247.	1.4	6
74	AduPARE1A and gemcitabine combined treatment trigger synergistic antitumor effects in pancreatic cancer through NF-κB mediated uPAR activation. Molecular Cancer, 2015, 14, 146.	19.2	6
75	Preclinical testing of oncolytic adenovirus sensitivity in patient-derived tumor organoids. STAR Protocols, 2021, 2, 101017.	1.2	6
76	Arming Oncolytic Adenoviruses: Effect of Insertion Site and Splice Acceptor on Transgene Expression and Viral Fitness. International Journal of Molecular Sciences, 2020, 21, 5158.	4.1	5
77	Identification and characterization of a novel splice-site mutation in a patient with Wiskott-Aldrich syndrome. Journal of Human Genetics, 2003, 48, 590-593.	2.3	4
78	Controlling Adenoviral Replication to Induce Oncolytic Efficacy~!2009-11-11~!2010-01-02~!2010-05-26~!. The Open Gene Therapy Journal, 2010, 3, 15-23.	1.2	4
79	Two novel mutations identified in the Wiskott-Aldrich syndrome protein gene cause Wiskott-Aldrich syndrome and thrombocytopenia. International Journal of Molecular Medicine, 2007, 19, 777-82.	4.0	2
80	Chapter 5.9 Modelling Down syndrome in mice. Handbook of Behavioral Neuroscience, 1999, 13, 895-913.	0.0	1
81	Two novel mutations in the WASP gene in Wiskott-Aldrich patients of Chile origin: W64R and A124E. Human Mutation, 2000, 15, 487-487.	2.5	1
82	Two novel mutations identified in the Wiskott-Aldrich syndrome protein gene cause Wiskott-Aldrich syndrome and thrombocytopenia. International Journal of Molecular Medicine, 2007, 19, 777.	4.0	1
83	Terapias avanzadas en enfermedades raras. Arbor, 2018, 194, 467.	0.3	1
84	Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses. NAR Cancer, 2021, 3, zcab015.	3.1	1
85	Novel membrane cell projection defects in Wiskott-Aldrich syndrome B cells. International Journal of Molecular Medicine, 0, , .	4.0	1
86	Other Well-Defined Immunodeficiency Syndromes. , 2012, , 343-368.		0
87	Tat8-TK/GCV Suicide Gene Therapy Induces Pancreatic Tumor Regression In Vivo. Human Gene Therapy, 2005, .	2.7	0
88	Targeting the CYP2B1/Cyclophosphamide Suicide System to Fibroblast Growth Factor Receptors Results in a Potent Antitumoral Response in Pancreatic Cancer Models. Human Gene Therapy, 2006, .	2.7	0
89	Editorial - Advances in Oncolytic Antitumour Adenoviral Therapies: Three Key Aspects. The Open Gene Therapy Journal, 2013, 3, 8-8.	1.2	Ο