
Alecia M Kiszonas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wheat breeding for quality: A historical review. Cereal Chemistry, 2018, 95, 17-34.	1.1	79
2	Effect of Processing on Phenolic Composition of Dough and Bread Fractions Made from Refined and Whole Wheat Flour of Three Wheat Varieties. Journal of Agricultural and Food Chemistry, 2014, 62, 10431-10436.	2.4	57
3	Wheat Arabinoxylan Structure Provides Insight into Function. Cereal Chemistry, 2013, 90, 387-395.	1.1	56
4	Impacts of the Particle Sizes and Levels of Inclusions of Cherry Pomace on the Physical and Structural Properties of Direct Expanded Corn Starch. Food and Bioprocess Technology, 2017, 10, 394-406.	2.6	51
5	A Comprehensive Survey of Soft Wheat Grain Quality in U.S. Germplasm. Cereal Chemistry, 2013, 90, 47-57.	1.1	38
6	Effect of Soft Kernel Texture on the Milling Properties of Soft Durum Wheat. Cereal Chemistry, 2016, 93, 513-517.	1.1	37
7	Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. Journal of Cereal Science, 2016, 71, 183-189.	1.8	36
8	Relationships between Falling Number, αâ€amylase activity, milling, cookie, and sponge cake quality of soft white wheat. Cereal Chemistry, 2018, 95, 373-385.	1.1	32
9	Soft Kernel Durum Wheat—A New Bakery Ingredient?. Cereal Foods World, 2015, 60, 76-83.	0.7	29
10	Modeling Endâ€Use Quality in U.S. Soft Wheat Germplasm. Cereal Chemistry, 2015, 92, 57-64.	1.1	29
11	Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). Journal of Cereal Science, 2017, 77, 73-83.	1.8	28
12	Endâ€Use Quality of CIMMYTâ€Đerived Softâ€Kernel Durum Wheat Germplasm: II. Dough Strength and Pan Bread Quality. Crop Science, 2017, 57, 1485-1494.	0.8	28
13	A Critical Assessment of the Quantification of Wheat Grain Arabinoxylans Using a Phloroglucinol Colorimetric Assay. Cereal Chemistry, 2012, 89, 143-150.	1.1	27
14	Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. Journal of Cereal Science, 2017, 74, 263-271.	1.8	27
15	Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population. Journal of Cereal Science, 2018, 79, 57-65.	1.8	25
16	Endâ€Use Quality of CIMMYTâ€Derived Softâ€Kernel Durum Wheat Germplasm: I. Grain, Milling, and Soft Wheat Quality. Crop Science, 2017, 57, 1475-1484.	0.8	24
17	Influence of Soft Kernel Texture on the Flour, Water Absorption, Rheology, and Baking Quality of Durum Wheat. Cereal Chemistry, 2017, 94, 215-222.	1.1	22
18	Prevalence of Puroindoline D1 and Puroindoline b-2 variants in U.S. Pacific Northwest wheat breeding germplasm pools, and their association with kernel texture. Theoretical and Applied Genetics, 2012, 124, 1259-1269.	1.8	21

Alecia M Kiszonas

#	Article	IF	CITATIONS
19	Arabinoxylan content and characterisation throughout the breadâ€baking process. International Journal of Food Science and Technology, 2015, 50, 1911-1921.	1.3	19
20	Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods, 2022, 11, 1532.	1.9	16
21	Genetic analysis of a unique â€~super soft' kernel texture phenotype in soft white spring wheat. Journal of Cereal Science, 2019, 85, 162-167.	1.8	15
22	Phytochemical Profile and Antiproliferative Activity of Dough and Bread Fractions Made from Refined and Whole Wheat Flours. Cereal Chemistry, 2015, 92, 271-277.	1.1	13
23	Influence of Soft Kernel Texture on Fresh Durum Pasta. Journal of Food Science, 2018, 83, 2812-2818.	1.5	11
24	Re-evolution of Durum Wheat by Introducing the Hardness and Glu-D1 Loci. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	11
25	Mapping kernel texture in a soft durum (Triticum turgidum subsp. durum) wheat population. Journal of Cereal Science, 2019, 85, 20-26.	1.8	10
26	Goniometry and Limb Girth in Miniature Dachshunds. Journal of Veterinary Medicine, 2016, 2016, 1-5.	1.6	9
27	Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2017, 130, 891-902.	1.8	9
28	Color characteristics of white salted, alkaline, and egg noodles prepared from <i>Triticum aestivum</i> L. and a soft kernel durum <i>T. turgidum</i> ssp. <i>durum</i> . Cereal Chemistry, 2018, 95, 747-759.	1.1	9
29	Determination of optimal storage temperature and duration for analysis of total and isoenzyme lactate dehydrogenase activities in canine serum and cerebrospinal fluid. Veterinary Clinical Pathology, 2015, 44, 253-261.	0.3	8
30	Tracking Arabinoxylans Through the Preparation of Pancakes. Cereal Chemistry, 2015, 92, 37-43.	1.1	8
31	Influence of Low-Molecular-Weight Glutenin Subunit Haplotypes on Dough Rheology in Elite Common Wheat Varieties. Cereal Chemistry, 2017, 94, CCHEM-07-17-013.	1.1	8
32	Pasta Production: Complexity in Defining Processing Conditions for Reference Trials and Quality Assessment Methods. Cereal Chemistry, 2017, 94, 791-797.	1.1	8
33	Late-maturity α-amylase (LMA): exploring the underlying mechanisms and end-use quality effects in wheat. Planta, 2022, 255, 2.	1.6	8
34	Survey of Tuber pH Variation in Potato (Solanum) Species. American Journal of Potato Research, 2010, 87, 167-176.	0.5	7
35	Identification of loci and molecular markers associated with Super Soft kernel texture in wheat. Journal of Cereal Science, 2019, 87, 286-291.	1.8	7
36	Roller milling performance of dry yellow split peas: Mill stream composition and functional characteristics. Cereal Chemistry, 2021, 98, 462-473.	1.1	7

#	Article	IF	CITATIONS
37	Apple pomace pretreated with hydrochloric acid exhibited better adherence with the corn starch during extrusion expansion. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100089.	1.6	7
38	Serum Melatonin Values in Normal Dogs and Dogs with Seizures. Journal of the American Animal Hospital Association, 2019, 55, 78-82.	0.5	6
39	Effects of <i>Gluâ€Ð1</i> gene introgressions on soft white spring durum wheat (<i>Triticum) Tj ETQq1 1 0.7843</i>	314 rgBT / 1.1	Oyerlock 10
40	Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits. Molecular Breeding, 2018, 38, 1.	1.0	5
41	Use of Student's t statistic as a phenotype of relative consumption preference of wheat (Triticum) Tj ETQq1 1 0.7	′84314 rg 1.8	BT ₄ /Overloc
42	Repeatability of Mice Consumption Discrimination of Wheat (<i>Triticum aestivum</i> L.) Varieties across Field Experiments and Mouse Cohorts. Journal of Food Science, 2015, 80, S1589-94.	1.5	4
43	Identification of SNPs, QTLs, and dominant markers associated with wheat grain flavor using genotyping-by-sequencing. Journal of Cereal Science, 2017, 76, 140-147.	1.8	3
44	Evaluation of commercial αâ€amylase enzymeâ€linked immunosorbent assay (ELISA) test kits for wheat. Cereal Chemistry, 2018, 95, 206-210.	1.1	3
45	A device for the efficient detection of wheat seeds with waxy endosperm. Cereal Chemistry, 2019, 96, 797-801.	1.1	3
46	Registration of extraâ€hard kernel nearâ€isogenic hexaploid wheat genetic stocks lacking puroindoline genes. Journal of Plant Registrations, 2020, 14, 92-95.	0.4	3
47	Association mapping of sponge cake volume in U.S. Pacific Northwest elite soft white wheat (Triticum) Tj ETQq1	1 0.78431 1.8	.4 ₃ gBT /Ov∈
48	Identifying genetic markers of wheat (Triticum aestivum) associated with flavor preference using a laboratory mouse model. Journal of Cereal Science, 2016, 71, 153-159.	1.8	2
49	Effect of wheat (Triticum aestivum L.) seed color and hardness genes on the consumption preference of the house mouse (Mus musculus L.). Mammalia, 2016, 80, .	0.3	2
50	Effects of the functional <i>Gpcâ€B1</i> allele on soft durum wheat grain, milling, flour, dough, and breadmaking quality. Cereal Chemistry, 2021, 98, 1250-1258.	1.1	2
51	Genetic architecture of end-use quality traits in soft white winter wheat. BMC Genomics, 2022, 23, .	1.2	2
52	Can Wheat Bran Mitigate Malnutrition and Enteric Pathogens?. Cereal Foods World, 2017, 62, 214-217.	0.7	0
53	Sponge cake baking quality—An 18â€year retrospective. Cereal Chemistry, 2021, 98, 532-546.	1.1	0