
Farhad Sharif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology, phase diagram, and properties of <scp>highâ€density</scp> polyethylene/thermally treated waste polyethylene wax blends. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
2	Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Applied Biochemistry and Biotechnology, 2022, 194, 2542-2564.	1.4	10
3	Effects of modified titanium dioxide nanoparticles on the thermal and mechanical properties of poly(l-lactide)-b-poly(ε-caprolactone). Iranian Polymer Journal (English Edition), 2022, 31, 893-904.	1.3	2
4	Bimetallic nickel–cobalt oxide nanoparticle/ electrospun carbon nanofiber composites: Preparation and application for supercapacitor electrode. Ceramics International, 2022, 48, 10015-10023.	2.3	25
5	Bioinspired pressure-sensitive adhesive: evaluation of the effect of dopamine methacrylamide comonomer as a general property modifier using molecular dynamics simulation. RSC Advances, 2021, 11, 20557-20569.	1.7	6
6	Performance-tuning of PVA-based gel electrolytes by acid/PVA ratio and PVA molecular weight. SN Applied Sciences, 2021, 3, 1.	1.5	23
7	Preparation and evaluation of electrospun carbon nanofibers infused by metal nanoparticles for supercapacitor electrodes application. Synthetic Metals, 2021, 274, 116706.	2.1	16
8	Synthesis and characterization of poly(Lâ€lactide)â€blockâ€poly(εâ€caprolactone)â€grafted titanium dioxide nanoparticles via ringâ€opening in situ grafting polymerization. Polymer Composites, 2021, 42, 3722-3731.	2.3	2
9	A molecular dynamics study on the role of oxygen-containing functional groups on the adhesion of polymeric films to the aluminum surface. Fluid Phase Equilibria, 2021, 536, 112966.	1.4	10
10	Mechanistic study on the metallocene-based tandem catalytic coordinative chain transfer polymerization for the synthesis of highly branched polyolefins. European Polymer Journal, 2021, 152, 110454.	2.6	12
11	Mechanical properties of poly(vinyl alcohol) nanocomposite films improved by graphene oxide-assisted nanoclay dispersion. Iranian Polymer Journal (English Edition), 2021, 30, 1053-1061.	1.3	4
12	Effect of formulation and process on morphology and electrical conductivity of Ag-graphene hybrid inks. Synthetic Metals, 2021, 281, 116913.	2.1	7
13	Rheological Behavior and Filtration of Water-Based Drilling Fluids Containing Graphene Oxide: Experimental Measurement, Mechanistic Understanding, and Modeling. ACS Omega, 2021, 6, 29905-29920.	1.6	29
14	Analytical representation of bimodality in bivariate distribution of chain length and chemical composition of copolymers. Chemical Engineering Journal, 2021, 431, 133229.	6.6	4
15	Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. Journal of Energy Storage, 2020, 27, 101072.	3.9	299
16	Control over Branching Topology by Introducing a Dual Catalytic System in Coordinative Chain Transfer Polymerization of Olefins. Macromolecules, 2020, 53, 4312-4322.	2.2	27
17	MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode for flexible supercapacitors. Electrochimica Acta, 2020, 336, 135743.	2.6	45
18	Change in interfacial behavior by variation of amphiphilic nanosheets/anionic surfactant ratio using dynamic tensiometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124754.	2.3	5

#	Article	IF	CITATIONS
19	Hollow Polyaniline Nanofibers for Highly Sensitive Ammonia Detection Applications. IEEE Sensors Journal, 2019, 19, 9616-9623.	2.4	15

 $_{20}$ Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl) Tj ETQq0 0 0 rgBT $_{1.8}^{O}$ Verlock 10 Tf 50 70 $_{1.8}^{O}$

21	A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Electrochimica Acta, 2019, 305, 187-196.	2.6	125
22	Modeling Condensed Mode Operation for Ethylene Polymerization: Part III. Mass and Heat Transfer. Industrial & Engineering Chemistry Research, 2018, 57, 6097-6114.	1.8	18
23	Preparation and evaluation of magnetic field-induced orientation on magnetic nanoparticles on PVA nanocomposite films. Journal of Materials Science, 2018, 53, 5051-5062.	1.7	13
24	Effect of fiber nano-scratch on macro strain hardening behavior in engineered cementitious composites. Physica B: Condensed Matter, 2018, 545, 442-451.	1.3	8
25	Debonding mechanism of polymeric fibers in reinforced cementitious composites as a function of crystallinity degree of fibers. Journal of Composite Materials, 2018, 52, 383-394.	1.2	2
26	GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. Journal of Polymer Research, 2018, 25, 1.	1.2	16
27	Preparation and electrochemical performance of a novel three dimensional structure of polyaniline hollow fibers decorated by graphene. Polymer, 2018, 154, 80-89.	1.8	20
28	Rheological and thermorheological assessment of polyethylene in multiple extrusion process. Thermochimica Acta, 2018, 668, 19-27.	1.2	20
29	Time-sweep rheometry for evaluating polyethylene degradation behavior: Effect of formulation and process conditions. Polymer Testing, 2018, 70, 39-46.	2.3	10
30	Modeling Condensed Mode Operation for Ethylene Polymerization: Part I. Thermodynamics of Sorption. Industrial & Engineering Chemistry Research, 2017, 56, 1168-1185.	1.8	23
31	High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 11108-11113.	1.1	19
32	A flexible electrode based on recycled paper pulp and reduced graphene oxide composite. Journal of Materials Science: Materials in Electronics, 2017, 28, 4990-4996.	1.1	11
33	Comprehensive computational assessment of blood flow characteristics of left ventricle based on in-vivo MRI in presence of artificial myocardial infarction. Mathematical Biosciences, 2017, 294, 143-159.	0.9	2
34	A high quality ITO/PET electrode for flexible and transparent optoelectronic devices. Journal of Materials Science: Materials in Electronics, 2017, 28, 2962-2969.	1.1	21
35	Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. Journal of Materials Science: Materials in Electronics, 2017, 28, 1419-1427.	1.1	12
36	Synthesis and Electrochemical Evaluation of Conductive Polyacrylamide Nanocomposite Hydrogels. Advances in Polymer Technology, 2016, 35, 369-377.	0.8	0

#	Article	IF	CITATIONS
37	The impact of valve simplifications on left ventricular hemodynamics in a three dimensional simulation based on in vivo MRI data. Journal of Biomechanics, 2016, 49, 1482-1489.	0.9	31
38	Integrated synthesis and surface passivation of ZnO nanoparticles to enhance UV spectrum selectivity. Journal of Materials Science: Materials in Electronics, 2016, 27, 8221-8226.	1.1	8
39	Introducing a highly dispersed reduced graphene oxide nano-biohybrid employing chitosan/hydroxyethyl cellulose for controlled drug delivery. International Journal of Pharmaceutics, 2016, 509, 400-407.	2.6	28
40	Effect of electrospinning on the ionic conductivity of polyacrylonitrile/polymethyl methacrylate nanofibrous membranes: optimization based on the response surface method. Iranian Polymer Journal (English Edition), 2016, 25, 525-537.	1.3	11
41	Experimental investigation of laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube. International Journal of Thermal Sciences, 2016, 100, 316-323.	2.6	93
42	Synthesis and characterization of poly(ethylene tetrasulfide)/graphene oxide nanocomposites by in situ polymerization method. Journal of Sulfur Chemistry, 2016, 37, 328-339.	1.0	8
43	Physical gelation process as direct evidence for crystallization behavior of isotactic polypropylene/clay composites. Journal of Thermoplastic Composite Materials, 2016, 29, 1656-1666.	2.6	2
44	Investigation of Effect of Electrospinning Parameters on the Morphology of Polyacrylonitrile/Polymethylmethacrylate Nanofibers: A Box–Behnken-Based Study. Journal of Macromolecular Science - Physics, 2015, 54, 975-991.	0.4	7
45	Brownian dynamics simulation of amphiphilic block copolymers with different tail lengths, comparison with theory and comicelles. Journal of Molecular Graphics and Modelling, 2015, 62, 165-173.	1.3	6
46	Graphene–gold nanoparticle composite: Application as a good scaffold for construction of glucose oxidase biosensor. Materials Science and Engineering C, 2015, 49, 297-304.	3.8	41
47	Effect of graphene nanoplatelets presence on the morphology, structure, and thermal properties of polypropylene in fiber meltâ€spinning process. Polymer Composites, 2015, 36, 367-375.	2.3	22
48	Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. International Journal of Pharmaceutics, 2015, 484, 276-282.	2.6	45
49	Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres. Composites Part A: Applied Science and Manufacturing, 2015, 76, 203-214.	3.8	26
50	Effect of bending deformation on photovoltaic performance of flexible graphene/Ag electrode-based polymer solar cells. RSC Advances, 2015, 5, 30889-30901.	1.7	19
51	Variation of Comonomer Content in LLDPE Particles with Different Sizes from an Industrial Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2015, 54, 9870-9876.	1.8	8
52	Graphene oxideâ€induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. Journal of Polymer Science Part A, 2014, 52, 1545-1554.	2.5	65
53	Turbulent Convective Heat Transfer and Pressure Drop of Graphene–Water Nanofluid Flowing Inside a Horizontal Circular Tube. Journal of Dispersion Science and Technology, 2014, 35, 1230-1240.	1.3	60
54	Experimental Study on the Relationship between Particles Size and Properties of Polyethylene Powder from an Industrial Fluidized Bed Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 13543-13549.	1.8	8

#	Article	IF	CITATIONS
55	Dispersion of rGO in polymeric matrices by thermodynamically favorable self-assembly of GO at oilâ \in "water interfaces. RSC Advances, 2014, 4, 8711.	1.7	31
56	Evaluating protection performance of zinc rich epoxy paints modified with polyaniline and polyaniline-clay nanocomposite. Progress in Organic Coatings, 2014, 77, 1299-1308.	1.9	59
57	Facile synthesis of polyaniline nanofibers in supercritical CO2 with high yield. Research on Chemical Intermediates, 2013, 39, 4137-4144.	1.3	6
58	Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide – organic solvents liquid crystals. Carbon, 2013, 64, 403-415.	5.4	69
59	Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 2013, 49, 42-50.	3.8	242
60	Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochimica Acta, 2013, 563, 22-32.	1.2	55
61	THE INFLUENCE OF OXYGEN-CONTAINING FUNCTIONAL GROUPS ON THE SURFACE BEHAVIOR AND ROUGHNESS CHARACTERISTICS OF GRAPHENE OXIDE. Nano, 2013, 08, 1350045.	0.5	45
62	Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. Journal of Materials Chemistry, 2012, 22, 12709.	6.7	269
63	Preparation of polyaniline and self-doped polyaniline–clay nanocomposites in supercritical CO2: Synthesis and conductivity study. Synthetic Metals, 2012, 162, 1879-1886.	2.1	8
64	Brownian Dynamics Simulation of Comicellization of Amphiphilic Block Copolymers with Different Tail Lengths. Langmuir, 2012, 28, 16243-16253.	1.6	17
65	Structure development and melt viscoelastic properties of PE/organoclay nanocomposite blown films. Journal of Applied Polymer Science, 2012, 125, E435.	1.3	12
66	Molecular level dispersion of graphene in polymer matrices using colloidal polymer and graphene. Journal of Colloid and Interface Science, 2012, 366, 44-50.	5.0	48
67	A new approach to using submicron emeraldine-base polyaniline in corrosion-resistant epoxy coatings. Journal of Coatings Technology Research, 2012, 9, 47-57.	1.2	20
68	Self-aligned Graphene Sheets-Polyurethane Nanocomposites. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	2
69	Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites. Soft Matter, 2011, 7, 3432.	1.2	189
70	Synthesis of exfoliated polyaniline–clay nanocomposite in supercritical CO2. Journal of Supercritical Fluids, 2011, 59, 124-130.	1.6	17
71	Parametric study of FENE and FENE-P models in steady and unsteady flow in a circular pipe using CONNFFESSIT approach. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1012-1023.	1.0	1
72	Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Progress in Organic Coatings, 2011, 70, 39-44.	1.9	80

#	Article	IF	CITATIONS
73	Optimization of mechanical properties of PP/Nanoclay/CaCO ₃ ternary nanocomposite using response surface methodology. Journal of Applied Polymer Science, 2011, 122, 3188-3200.	1.3	86
74	Effect of material and processing parameters on mechanical properties of Polypropylene/Ethylene–Propylene–Diene–Monomer/clay nanocomposites. Materials & Design, 2011, 32, 3803-3809.	5.1	53
75	Experimental evaluation of high solid polyurethane coating in the presence of salt at high temperature. Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 681-688.	0.8	5
76	Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces. Journal of Colloid and Interface Science, 2010, 344, 575-583.	5.0	39
77	Characteristics of polymers that stabilize colloids for the production of graphene from graphene oxide. Journal of Colloid and Interface Science, 2010, 349, 63-69.	5.0	26
78	Using of p-Phenylenediamine as Modifier of Montmorrilonite for Preparation of Epoxy-Clay Nanocomposites: Morphology and Solvent Resistance Properties. Polymer-Plastics Technology and Engineering, 2010, 49, 285-291.	1.9	19
79	The Impact of Organoclay on the Physical and Mechanical Properties of Epoxy-Clay Nanocomposite Coatings. Journal of Macromolecular Science - Physics, 2010, 49, 960-969.	0.4	5
80	Enhancement of Nanoclay Dispersion and Exfoliation in Epoxy Using Aminic Hardener Treated Clay. Journal of Dispersion Science and Technology, 2010, 31, 1350-1357.	1.3	5
81	Effect of solid loading and aggregate size on the rheological behavior of PDMS/Calcium Carbonate suspensions. Brazilian Journal of Chemical Engineering, 2009, 26, 713-721.	0.7	16
82	Predicting flow induced change in phase diagram of polymer solutions in simple shear flow. E-Polymers, 2009, 9, .	1.3	1
83	Prediction of crystallinity profile and eject time of injection molded parts using finite element method (FEM). E-Polymers, 2009, 9, .	1.3	1
84	Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. Journal of Coatings Technology Research, 2008, 5, 241-249.	1.2	95
85	Design guidelines for development of tin-free antifouling self-polishing coatings using simulation. Progress in Organic Coatings, 2008, 63, 79-86.	1.9	12
86	Simulation and Development of Tinâ€Free Antifouling Selfâ€Polishing Coatings. Macromolecular Symposia, 2008, 274, 109-115.	0.4	3
87	Non-Isothermal Simulation of the Film Blowing Process Using Multi-Mode Extended Pom-Pom Model. International Polymer Processing, 2008, 23, 30-37.	0.3	16
88	AN ARTIFICIAL NEURAL NETWORK APPROACH TO CAPILLARY RISE IN POROUS MEDIA. Chemical Engineering Communications, 2007, 195, 435-448.	1.5	6
89	Study of the torsional potential energies of 2-methylpropane, n-butane, and 2-methylbutane with high-level ab initio calculations. Computational and Theoretical Chemistry, 2007, 814, 43-49.	1.5	14
90	Application of artificial neural network (ANN) in order to predict the surface free energy of powders using the capillary rise method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 280-285.	2.3	18

0

#	Article	IF	CITATIONS
91	Analysis of a viscoelastic fluid in an annulus using Giesekus model. Journal of Non-Newtonian Fluid Mechanics, 2004, 118, 49-55.	1.0	26

92 Extending Alkenes' Value Chain to Functionalized Polyolefins. , 0, , .