Robert J Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2778315/publications.pdf

Version: 2024-02-01

94 6,099
papers citations

155

all docs

citations h-index g-index

155
155
155
docs citations times ranked citing authors

38

79644

73

#	Article	IF	CITATIONS
1	The Physical Climate at Global Warming Thresholds as Seen in the U.K. Earth System Model. Journal of Climate, 2022, 35, 29-48.	1.2	12
2	Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus) Tj ETQq0 0 0 rgB7	Γ/Qverlocl	k 10 Tf 50 702 25
	Atmospheric Chemistry and Physics, 2022, 22, 395-418. An integrated analysis of contemporary methane emissions and concentration trends over China		
3	using in situ and satellite observations and model simulations. Atmospheric Chemistry and Physics, 2022, 22, 1229-1249.	1.9	3
4	Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate. Nature Communications, 2022, 13, 1378.	5.8	31
5	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
6	Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. Atmospheric Measurement Techniques, 2022, 15, 3401-3437.	1.2	10
7	Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
8	Rain-fed pulses of methane from East Africa during 2018–2019 contributed to atmospheric growth rate. Environmental Research Letters, 2021, 16, 024021.	2.2	28
9	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH <sub< sub=""> ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.</sub<>	1.9	55
10	2010â€"2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmospheric Chemistry and Physics, 2021, 21, 4339-4356.	1.9	45
11	Can a regional-scale reduction of atmospheric CO ₂ during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO ₂ retrievals. Atmospheric Measurement Techniques, 2021, 14, 2141-2166.	1.2	28
12	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	1.9	68
13	Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH ₄ data with weak-constraint four-dimensional variational data assimilation. Atmospheric Chemistry and Physics, 2021, 21, 9545-9572.	1.9	14
14	Estimates of North African Methane Emissions from 2010 to 2017 Using GOSAT Observations. Environmental Science and Technology Letters, 2021, 8, 626-632.	3.9	13
15	Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. Atmospheric Chemistry and Physics, 2021, 21, 10643-10669.	1.9	13
16	Monitoring Greenhouse Gases from Space. Remote Sensing, 2021, 13, 2700.	1.8	17
17	Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 2021, 21, 12631-12647.	1.9	23
18	Large Methane Emissions From the Pantanal During Rising Waterâ€Levels Revealed by Regularly Measured Lower Troposphere CH ₄ Profiles. Global Biogeochemical Cycles, 2021, 35, e2021GB006964.	1.9	8

#	Article	IF	CITATIONS
19	The added value of satellite observations of methane forunderstanding the contemporary methane budget. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20210106.	1.6	21
20	Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 2021, 21, 14159-14175.	1.9	54
21	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
22	A New TanSat XCO2 Global Product towards Climate Studies. Advances in Atmospheric Sciences, 2021, 38, 8-11.	1.9	19
23	Methane Growth Rate Estimation and Its Causes in Western Canada Using Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033948.	1.2	1
24	Atmospheric observations consistent with reported decline in the UK's methane emissions (2013–2020). Atmospheric Chemistry and Physics, 2021, 21, 16257-16276.	1.9	8
25	A new space-borne perspective of crop productivity variations over the US Corn Belt. Agricultural and Forest Meteorology, 2020, 281, 107826.	1.9	17
26	Toward High Precision XCO ₂ Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032794.	1.2	25
27	The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals. Atmosphere, 2020, 11, 1219.	1.0	1
28	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	1.2	22
29	Quantifying sources of Brazil's CH ₄ emissions between 2010 and 2018 from satellite data. Atmospheric Chemistry and Physics, 2020, 20, 13041-13067.	1.9	17
30	Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations. Biogeosciences, 2020, 17, 5669-5691.	1.3	16
31	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
32	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	3.7	53
33	Earth system music: music generated from the United Kingdom Earth System Model (UKESM1). Geoscience Communication, 2020, 3, 263-278.	0.5	4
34	Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model. Geoscientific Model Development, 2020, 13, 3839-3862.	1.3	27
35	Seasonal and Inter-annual Variation of Evapotranspiration in Amazonia Based on Precipitation, River Discharge and Gravity Anomaly Data. Frontiers in Earth Science, 2019, 7, .	0.8	8
36	Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 2019, 19, 7859-7881.	1.9	111

#	Article	IF	CITATIONS
37	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	1.3	448
38	Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 1475-1512.	1.9	73
39	An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmospheric Chemistry and Physics, 2019, 19, 14721-14740.	1.9	58
40	Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth System Science Data, 2019, 11, 1411-1436.	3.7	96
41	Copernicus Climate Change Service (C3S) Global Satellite Observations of Atmospheric Carbon Dioxide and Methane. Advances in Astronautics Science and Technology, 2018, 1, 57-60.	0.5	16
42	Attribution of recent increases in atmospheric methane through 3-D inverse modelling. Atmospheric Chemistry and Physics, 2018, 18, 18149-18168.	1.9	51
43	Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared. Remote Sensing, 2018, 10, 1469.	1.8	10
44	Tropical land carbon cycle responses to $2015/16$ El Ni $\tilde{A}\pm o$ as recorded by atmospheric greenhouse gas and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170302.	1.8	37
45	Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016. Atmospheric Chemistry and Physics, 2018, 18, 17355-17370.	1.9	27
46	GreenHouse gas Observations of the Stratosphere and Troposphere (GHOST): an airborne shortwave-infrared spectrometer for remote sensing of greenhouse gases. Atmospheric Measurement Techniques, 2018, 11, 5199-5222.	1.2	6
47	2010–2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors. Atmospheric Chemistry and Physics, 2018, 18, 12257-12267.	1.9	35
48	A measurement-based verification framework for UK greenhouse gas emissions: an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) project. Atmospheric Chemistry and Physics, 2018, 18, 11753-11777.	1.9	29
49	Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations. Remote Sensing of Environment, 2018, 211, 261-275.	4.6	55
50	Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 2017, 203, 276-295.	4.6	52
51	Atmospheric observations show accurate reporting and little growth in India's methane emissions. Nature Communications, 2017, 8, 836.	5.8	67
52	Consistent regional fluxes of CH ₄ and CO ₂ inferred from GOSAT proxy XCH ₄ â€``â€``XCO ₂ retrievs 2010â€"2014. Atmospheric Chemistry and Physics, 2017, 17, 4781-4797.	al ^{1.9}	52
53	Study of the footprints of short-term variation in XCO ₂ observed by TCCON sites using NIES and FLEXPART atmospheric transport models. Atmospheric Chemistry and Physics, 2017, 17, 143-157.	1.9	10
54	Satellite-derived methane hotspot emission estimates using a fast data-driven method. Atmospheric Chemistry and Physics, 2017, 17, 5751-5774.	1.9	63

#	Article	IF	CITATIONS
55	Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp. Atmospheric Measurement Techniques, 2017, 10, 4135-4164.	1.2	18
56	Impact of Aerosol Property on the Accuracy of a CO2 Retrieval Algorithm from Satellite Remote Sensing. Remote Sensing, 2016, 8, 322.	1.8	22
57	Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI. Remote Sensing, 2016, 8, 994.	1.8	8
58	Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Ni $ ilde{A}\pm o$. Geophysical Research Letters, 2016, 43, 10,472.	1.5	60
59	CH ₄ concentrations over the Amazon from GOSAT consistent with in situ vertical profile data. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,006.	1.2	18
60	Role of regional wetland emissions in atmospheric methane variability. Geophysical Research Letters, 2016, 43, 11,433.	1.5	37
61	Atmospheric CH ₄ and CO ₂ enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes. Atmospheric Chemistry and Physics. 2016. 16. 10111-10131.	1.9	49
62	Estimates of European uptake of CO ₂ inferred from GOSAT X _{CO₂ retrievals: sensitivity to measurement bias inside and outside Europe. Atmospheric Chemistry and Physics, 2016, 16, 1289-1302.}	1.9	77
63	Inverse modelling of CH ₄ emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmospheric Chemistry and Physics, 2015, 15, 113-133.	1.9	126
64	Does GOSAT capture the true seasonal cycle of carbon dioxide?. Atmospheric Chemistry and Physics, 2015, 15, 13023-13040.	1.9	63
65	Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 7049-7069.	1.9	225
66	Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion. Biogeosciences, 2015, 12, 5393-5414.	1.3	31
67	Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements. Atmospheric Measurement Techniques, 2015, 8, 3433-3445.	1.2	34
68	Assessing 5 years of GOSAT Proxy XCH ₄ data and associated uncertainties. Atmospheric Measurement Techniques, 2015, 8, 4785-4801.	1.2	64
69	The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 2015, 162, 344-362.	4.6	112
70	The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO ₂ and CH ₄ retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques, 2014, 7, 1723-1744.	1.2	70
71	Toward robust and consistent regional CO ₂ flux estimates from in situ and spaceborne measurements of atmospheric CO ₂ . Geophysical Research Letters, 2014, 41, 1065-1070.	1.5	126
72	Influence of differences in current GOSAT <i>> COSAT<i>> COSAT<i>COSAT<i>COSAT<i>COSAT<i cosat<i="" cosation="" cosation<="" td=""><td>1.5</td><td>45</td></i></i></i></i></i></i>	1.5	45

#	Article	IF	Citations
73	Estimating regional fluxes of CO ₂ and CH ₄ using space-borne observations of XCH ₄ . XCO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 12883-12895.	1.9	35
74	Satellite-inferred European carbon sink larger than expected. Atmospheric Chemistry and Physics, 2014, 14, 13739-13753.	1.9	83
75	On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmospheric Chemistry and Physics, 2014, 14, 577-592.	1.9	91
76	Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations. Atmospheric Chemistry and Physics, 2014, 14, 8173-8184.	1.9	93
77	First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes. Geophysical Research Letters, 2013, 40, 4098-4102.	1.5	36
78	HDO/H ₂ O ratio retrievals from GOSAT. Atmospheric Measurement Techniques, 2013, 6, 599-612.	1.2	45
79	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO ₂ retrievals over TCCON sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1493-1512.	1.2	46
80	A joint effort to deliver satellite retrieved atmospheric CO ₂ concentrations for surface flux inversions: the ensemble median algorithm EMMA. Atmospheric Chemistry and Physics, 2013, 13, 1771-1780.	1.9	62
81	Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmospheric Chemistry and Physics, 2013, 13, 5697-5713.	1.9	94
82	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDFâ€based CO ₂ retrievals from GOSAT. Journal of Geophysical Research, 2012, 117, .	3.3	42
83	Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with groundâ€based TCCON observations and GEOSâ€Chem model calculations. Journal of Geophysical Research, 2012, 117, .	3.3	139
84	Methane observations from the Greenhouse Gases Observing SATellite: Comparison to groundâ€based TCCON data and model calculations. Geophysical Research Letters, 2011, 38, .	1.5	211
85	Acetylene C ₂ H ₂ retrievals from MIPAS data and regions of enhanced upper tropospheric concentrations in August 2003. Atmospheric Chemistry and Physics, 2011, 11, 10243-10257.	1.9	14
86	Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission. Remote Sensing, 2011, 3, 270-304.	1.8	215
87	Intercomparison of integrated IASI and AATSR calibrated radiances at 11 and 12 μm. Atmospheric Chemistry and Physics, 2009, 9, 6677-6683.	1.9	22
88	Orbiting Carbon Observatory: Inverse method and prospective error analysis. Journal of Geophysical Research, 2008, 113, .	3.3	222
89	Retrieval of from simulated Orbiting Carbon Observatory measurements using the fast linearized Râ€2OS radiative transfer model. Journal of Geophysical Research, 2008, 113, .	3.3	16
90	Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. Journal of Geophysical Research, 2008, 113 , .	3.3	31

#	Article	IF	CITATIONS
91	Evaluation of errors from neglecting polarization in the forward modeling of O2 A band measurements from space, with relevance to CO2 column retrieval from polarization-sensitive instruments. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 245-259.	1.1	34
92	Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bulletin of Volcanology, 1996, 58, 59-66.	1.1	55
93	The greenhouse gas project of ESA's climate change initiative (GHG-CCI): overview, achievements and future plans. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 165-172.	0.2	1
94	Comparative multifractal analysis of methane gas concentration time series in India and regions within India. Proceedings of the Indian National Science Academy, 0, , .	0.5	O