Bart De Geest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/277799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenovirus-Mediated Gene Transfer of Human Platelet-Activating Factor–Acetylhydrolase Prevents Injury-Induced Neointima Formation and Reduces Spontaneous Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2001, 103, 2495-2500.	1.6	197
2	HDLassociated PAFâ€AH reduces endothelial adhesiveness in apoE â^'/â^' mice. FASEB Journal, 2000, 14, 2032-2039.	0.2	131
3	The Role of Liver Sinusoidal Cells in Hepatocyte-Directed Gene Transfer. American Journal of Pathology, 2010, 176, 14-21.	1.9	108
4	Human Apolipoprotein A-I Gene Transfer Reduces the Development of Experimental Diabetic Cardiomyopathy. Circulation, 2008, 117, 1563-1573.	1.6	103
5	Fixation methods for electron microscopy of human and other liver. World Journal of Gastroenterology, 2010, 16, 2851.	1.4	85
6	Human ApoA-I Transfer Attenuates Transplant Arteriosclerosis via Enhanced Incorporation of Bone marrow–derived Endothelial Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 278-283.	1.1	77
7	Vascular-Protective Effects of High-Density Lipoprotein Include the Downregulation of the Angiotensin II Type 1 Receptor. Hypertension, 2009, 53, 682-687.	1.3	76
8	Effects of Adenovirus-Mediated Human Apo A-I Gene Transfer on Neointima Formation After Endothelial Denudation in Apo E–Deficient Mice. Circulation, 1997, 96, 4349-4356.	1.6	73
9	Critical role of scavenger receptor-Bl–expressing bone marrow–derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood, 2009, 113, 755-764.	0.6	72
10	Impact of HDL on adipose tissue metabolism and adiponectin expression. Atherosclerosis, 2010, 210, 438-444.	0.4	71
11	Elimination of Innate Immune Responses and Liver Inflammation by PEGylation of Adenoviral Vectors and Methylprednisolone. Human Gene Therapy, 2005, 16, 1439-1451.	1.4	69
12	Regression and stabilization of advanced murine atherosclerotic lesions: a comparison of LDL lowering and HDL raising gene transfer strategies. Journal of Molecular Medicine, 2011, 89, 555-567.	1.7	60
13	Construction of an Oncolytic Herpes Simplex Virus That Precisely Targets Hepatocellular Carcinoma Cells. Molecular Therapy, 2012, 20, 339-346.	3.7	52
14	Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants, 2022, 11, 784.	2.2	51
15	Circulating Apoptotic Endothelial Cells and Apoptotic Endothelial Microparticles Independently Predict the Presence of Cardiac Allograft Vasculopathy. Journal of the American College of Cardiology, 2012, 60, 324-331.	1.2	48
16	Effect of Promoters and Enhancers on Expression, Transgene DNA Persistence, and Hepatotoxicity After Adenoviral Gene Transfer of Human Apolipoprotein A-I. Human Gene Therapy, 2002, 13, 829-840.	1.4	47
17	Effect of Overexpression of Human Apo A-I in C57BL/6 and C57BL/6 Apo E–Deficient Mice on 2 Lipoprotein-Associated Enzymes, Platelet-Activating Factor Acetylhydrolase and Paraoxonase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, E68-75.	1.1	46
18	Sustained Expression of Human Apolipoprotein A-I after Adenoviral Gene Transfer in C57BL/6 Mice: Role of Apolipoprotein A-I Promoter, Apolipoprotein A-I Introns, and Human Apolipoprotein E Enhancer. Human Gene Therapy, 2000, 11, 101-112.	1.4	45

#	Article	IF	CITATIONS
19	Adenoviral gene transfer of ABIN-1 protects mice from TNF/galactosamine-induced acute liver failure and lethality. Hepatology, 2005, 42, 381-389.	3.6	45
20	Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. Journal of Heart and Lung Transplantation, 2015, 34, 1376-1384.	0.3	43
21	Lipid Emulsions Potently Increase Transgene Expression in Hepatocytes after Adenoviral Transfer. Molecular Therapy, 2006, 13, 98-107.	3.7	39
22	Therapeutic Potential of HDL in Cardioprotection and Tissue Repair. Handbook of Experimental Pharmacology, 2015, 224, 527-565.	0.9	39
23	Down-regulation of endothelial TLR4 signalling after apo A-I gene transfer contributes to improved survival in an experimental model of lipopolysaccharide-induced inflammation. Journal of Molecular Medicine, 2011, 89, 151-160.	1.7	36
24	Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiology, 2014, 14, 310.	1.3	36
25	The Liver as a Target Organ for Gene Therapy: State of the Art, Challenges, and Future Perspectives. Pharmaceuticals, 2012, 5, 1372-1392.	1.7	33
26	Selective homocysteine-lowering gene transfer attenuates pressure overload-induced cardiomyopathy via reduced oxidative stress. Journal of Molecular Medicine, 2015, 93, 609-618.	1.7	33
27	Adenoviral low density lipoprotein receptor attenuates progression of atherosclerosis and decreases tissue cholesterol levels in a murine model of familial hypercholesterolemia. Atherosclerosis, 2008, 201, 289-297.	0.4	31
28	Wild-type apo A-I and apo A-IMilano gene transfer reduce native and transplant arteriosclerosis to a similar extent. Journal of Molecular Medicine, 2009, 87, 287-297.	1.7	31
29	Gene Therapy for Familial Hypercholesterolemia. Current Pharmaceutical Design, 2011, 17, 2575-2591.	0.9	30
30	Role of the Arg123–Tyr166 Paired Helix of Apolipoprotein A-I in Lecithin:Cholesterol Acyltransferase Activation. Journal of Biological Chemistry, 1997, 272, 15967-15972.	1.6	29
31	Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure. Journal of Visualized Experiments, 2014, , .	0.2	29
32	Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. International Journal of Molecular Sciences, 2019, 20, 1273.	1.8	29
33	Topical HDL administration reduces vein graft atherosclerosis in apo E deficient mice. Atherosclerosis, 2011, 214, 271-278.	0.4	27
34	Selective HDL-Raising Human Apo A-I Gene Therapy Counteracts Cardiac Hypertrophy, Reduces Myocardial Fibrosis, and Improves Cardiac Function in Mice with Chronic Pressure Overload. International Journal of Molecular Sciences, 2017, 18, 2012.	1.8	27
35	Hepatocyte-specific ABCA1 transfer increases HDL cholesterol but impairs HDL function and accelerates atherosclerosis. Cardiovascular Research, 2010, 88, 376-385.	1.8	26
36	The Impact of Lipoproteins on Wound Healing: Topical HDL Therapy Corrects Delayed Wound Healing in Apolipoprotein E Deficient Mice. Pharmaceuticals, 2014, 7, 419-432.	1.7	26

#	Article	IF	CITATIONS
37	An Efficient and Safe Herpes Simplex Virus Type 1 Amplicon Vector for Transcriptionally Targeted Therapy of Human Hepatocellular Carcinomas. Molecular Therapy, 2007, 15, 1129-1136.	3.7	25
38	Lipid Lowering and HDL Raising Gene Transfer Increase Endothelial Progenitor Cells, Enhance Myocardial Vascularity, and Improve Diastolic Function. PLoS ONE, 2012, 7, e46849.	1.1	25
39	Successful treatment of established heart failure in mice with recombinant HDL (Milano). British Journal of Pharmacology, 2018, 175, 4167-4182.	2.7	25
40	Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in Scarb1 -Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2028-2040.	1.1	24
41	Overexpression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in mice does not affect adipogenesis or adipose tissue development. Thrombosis and Haemostasis, 2006, 95, 1019-1024.	1.8	22
42	Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis. International Journal of Molecular Sciences, 2017, 18, 1565.	1.8	22
43	Gene Therapy to Improve High-Density Lipoprotein Metabolism and Function. Current Pharmaceutical Design, 2010, 16, 1531-1544.	0.9	21
44	Apolipoprotein A-I gene transfer exerts immunomodulatory effects and reduces vascular inflammation and fibrosis in ob/ob mice. Journal of Inflammation, 2016, 13, 25.	1.5	21
45	Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. International Journal of Molecular Sciences, 2018, 19, 3399.	1.8	20
46	Species Differences in Hepatocyte-Directed Gene Transfer: Implications for Clinical Translation. Current Gene Therapy, 2009, 9, 83-90.	0.9	19
47	Effect of plasminogen activator inhibitor-1 on adipogenesis in vivo. Thrombosis and Haemostasis, 2009, 101, 388-393.	1.8	16
48	Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 718-728.	1.8	16
49	Enhanced Antitumor Efficacy of a Vascular Disrupting Agent Combined with an Antiangiogenic in a Rat Liver Tumor Model Evaluated by Multiparametric MRI. PLoS ONE, 2012, 7, e41140.	1.1	15
50	Impaired cholesterol efflux capacity and vasculoprotective function of high-density lipoprotein in heart transplant recipients. Journal of Heart and Lung Transplantation, 2014, 33, 499-506.	0.3	13
51	Cholesterol-Lowering Gene Therapy Counteracts the Development of Non-ischemic Cardiomyopathy in Mice. Molecular Therapy, 2017, 25, 2513-2525.	3.7	13
52	Administration of apo A-I (Milano) nanoparticles reverses pathological remodelling, cardiac dysfunction, and heart failure in a murine model of HFpEF associated with hypertension. Scientific Reports, 2020, 10, 8382.	1.6	13
53	The relative atherogenicity of VLDL and LDL is dependent on the topographic site. Journal of Lipid Research, 2010, 51, 1478-1485.	2.0	12
54	Role of Oxidative Stress in Heart Failure: Insights from Gene Transfer Studies. Biomedicines, 2021, 9, 1645.	1.4	12

#	Article	IF	CITATIONS
55	The Arg123-Tyr166 Central Domain of Human ApoAl Is Critical for Lecithin:Cholesterol Acyltransferase–Induced Hyperalphalipoproteinemia and HDL Remodeling in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 459-466.	1.1	11
56	Correction of endothelial dysfunction after selective homocysteine lowering gene therapy reduces arterial thrombogenicity but has no effect on atherogenesis. Journal of Molecular Medicine, 2011, 89, 1051-1058.	1.7	11
57	Cholesterol lowering attenuates pressure overload-induced heart failure in mice with mild hypercholesterolemia. Aging, 2019, 11, 6872-6891.	1.4	11
58	Blood Vessel Density in <i>De Novo</i> Formed Adipose Tissue Is Decreased Upon Overexpression of TIMPâ€1. Obesity, 2010, 18, 638-640.	1.5	10
59	HDL dysfunction, function, and heart failure. Aging, 2019, 11, 293-294.	1.4	10
60	High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines, 2020, 8, 620.	1.4	9
61	New perspectives on biological HDL-targeted therapies. Expert Opinion on Biological Therapy, 2017, 17, 793-796.	1.4	8
62	Cholesterol-Lowering Gene Therapy Prevents Heart Failure with Preserved Ejection Fraction in Obese Type 2 Diabetic Mice. International Journal of Molecular Sciences, 2019, 20, 2222.	1.8	8
63	Selective Homocysteine Lowering Gene Transfer Improves Infarct Healing, Attenuates Remodelling, and Enhances Diastolic Function after Myocardial Infarction in Mice. PLoS ONE, 2013, 8, e63710.	1.1	8
64	The diameter of liver sinusoidal fenestrae is not a major determinant of lipoprotein levels and atherosclerosis in cholesterol-fed rabbits. Cardiovascular Pathology, 2011, 20, 44-50.	0.7	7
65	Correlation of atherosclerosis between different topographic sites is highly dependent on the type of hyperlipidemia. Heart and Vessels, 2012, 27, 231-234.	0.5	7
66	Role of lipids and lipoproteins in myocardial biology and in the development of heart failure. Clinical Lipidology, 2015, 10, 329-342.	0.4	7
67	Role of high-density lipoproteins in cardioprotection and in reverse remodeling: Therapeutic implications. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159022.	1.2	7
68	The origin of intimal smooth muscle cells: are we on a steady road back to the past?. Cardiovascular Research, 2009, 81, 7-8.	1.8	5
69	Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia. Molecular Genetics and Metabolism Reports, 2015, 2, 51-60.	0.4	5
70	Early effect of a single intravenous injection of ethanol on hepatic sinusoidal endothelial fenestrae in rabbits. Comparative Hepatology, 2009, 8, 4.	0.9	4
71	Gene Transfer for Inherited Metabolic Disorders of the Liver: Immunological Challenges. Current Pharmaceutical Design, 2011, 17, 2542-2549.	0.9	4
72	Doxorubicin-induced cardiomyopathy: TERT gets to the heart of the matter. Molecular Therapy, 2021, 29, 1363-1365.	3.7	4

#	Article	IF	CITATIONS
73	Markers of endothelial injury and platelet microparticles are distinct in patients with stable native coronary artery disease and with cardiac allograft vasculopathy. International Journal of Cardiology, 2015, 179, 331-333.	0.8	3
74	Why the diameter of sinusoidal fenestrae unlikely matters for lipoprotein metabolism and atherosclerosis susceptibility. Cardiovascular Pathology, 2011, 20, 193-194.	0.7	2
75	Racial/ethnic differences in hypertension prevalence: Public health impact versus clinical importance of baseline data of the HELIUS study. European Journal of Preventive Cardiology, 2018, 25, 1911-1913.	0.8	1
76	The impact of air pollution and weather on cardiovascular events: The importance of time scale and historical air quality improvement. European Journal of Preventive Cardiology, 2020, , 2047487320938268.	0.8	1
77	Mesangial matrix expansion in a novel mouse model of diabetic kidney disease associated with the metabolic syndrome. Journal of Nephropathology, 2021, 10, e17-e17.	0.1	1
78	Elimination of Innate Immune Responses and Liver Inflammation by PEGylation of Adenoviral Vectors and Methylprednisolone. Human Gene Therapy, 2005, .	1.4	0
79	Increased Remnant Lipoproteins in Apo E Deficient Mice Induce Coronary Atherosclerosis following Transverse Aortic Constriction and Aggravate the Development of Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure. Biomedicines, 2022, 10, 1592.	1.4	0