Stephen Beeby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2777884/publications.pdf Version: 2024-02-01

STEDHEN REERV

#	Article	IF	CITATIONS
1	Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing. Microsystem Technologies, 2022, 28, 1467-1484.	1.2	23
2	Automated insertion of package dies onto wire and into a textile yarn sheath. Microsystem Technologies, 2022, 28, 1409-1421.	1.2	9
3	Finite element analysis (FEA) modelling and experimental verification to optimise flexible electronic packaging for <i>e</i> -textiles. Microsystem Technologies, 2022, 28, 1515-1524.	1.2	2
4	Millimeter-Wave Power Transmission for Compact and Large-Area Wearable IoT Devices Based on a Higher Order Mode Wearable Antenna. IEEE Internet of Things Journal, 2022, 9, 5229-5239.	5.5	15
5	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy, 2022, 92, 106739.	8.2	36
6	The effect of fabric properties on the performance of a textile based ferroelectret generator toward human body energy harvesting. Smart Materials and Structures, 2022, 31, 045015.	1.8	4
7	Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications. JPhys Energy, 2022, 4, 024003.	2.3	11
8	Design of Textile Antenna for Moisture Sensing. , 2022, 15, .		4
9	5G-Enabled E-Textiles Based on a Low-Profile Millimeter-Wave Textile Antenna. , 2022, 15, .		0
10	Printable biflourene based ultra-violet (UV) organic light-emitting electrochemical cells (OLECs) with improved device performance. Organic Electronics, 2022, 105, 106513.	1.4	5
11	Broadband Compact Substrate-Independent Textile Wearable Antenna for Simultaneous Near- and Far-Field Wireless Power Transmission. IEEE Open Journal of Antennas and Propagation, 2022, 3, 398-411.	2.5	13
12	E-Textile Breathing Sensor Using Fully Textile Wearable Antennas. , 2022, 15, .		5
13	An All Dispenser Printed Electrode Structure on Textile for Wearable Healthcare. , 2022, 15, .		1
14	Printed Non-Metallic Textile-Based Carbon Antenna for Low-Cost Green Wearable Applications. , 2022, ,		4
15	Meshed Microstrip Printed Antenna for Matching Network-Free RF Energy Harvesting. , 2022, , .		Ο
16	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Woven Structure. , 2022, 15, .		0
17	Highly Conductive Flexible Printed PEDOT:PSS films for Green Humidity Sensing Applications. , 2022, , .		1
18	Battery-Free Wireless Light-Sensing Tag Based on a Long-Range Dual-Port Dual-Polarized RFID Platform. Sensors, 2022, 22, 4782.	2.1	3

#	Article	IF	CITATIONS
19	Omnidirectional Dual-Polarized Low-Profile Textile Rectenna With Over 50% Efficiency for Sub- <i>μ</i> W/cm ² Wearable Power Harvesting. IEEE Transactions on Antennas and Propagation, 2021, 69, 2522-2536.	3.1	45
20	The influence of textile substrate on the performance of multilayer fabric supercapacitors. Journal of Industrial Textiles, 2021, 50, 1397-1408.	1.1	4
21	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	2.6	40
22	Flexible Supercapacitor Fabricated on a Polyester-Cotton Textile. Proceedings (mdpi), 2021, 68, 7.	0.2	0
23	Printed Textile-Based Electronic Devices. , 2021, , 1-28.		1
24	Powering E-Textiles Using a Single Thread Radio Frequency Energy Harvesting Rectenna. Proceedings (mdpi), 2021, 68, 16.	0.2	1
25	Fully Printed Wearable Electrode Textile for Electrotherapy Application. Proceedings (mdpi), 2021, 68, .	0.2	4
26	Simulation of 2-Coil and 4-Coil Magnetic Resonance Wearable WPT Systems. Proceedings (mdpi), 2021, 68, 13.	0.2	0
27	Dual-Polarized Wearable Antenna/Rectenna for Full-Duplex and MIMO Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Open Journal of Antennas and Propagation, 2021, 2, 844-857.	2.5	29
28	Analyzing and Maximizing the Power Harvesting Efficiency of a Textile Rectenna Through Reflector-Based Shielding. , 2021, , .		1
29	2.4 GHz Wearable Textile Antenna/Rectenna for Simultaneous Information and Power Transfer. , 2021, , .		5
30	Spray-Coated Organic Light-Emitting Electrochemical Cells Realized on a Standard Woven Polyester Cotton Textile. IEEE Transactions on Electron Devices, 2021, 68, 1717-1722.	1.6	8
31	Culinary inspired electrolytes for textile supercapacitors. Energy Reports, 2021, 7, 81-86.	2.5	1
32	Dispenser Printed Flexible Rectenna for Dual-ISM Band High-Efficiency Supercapacitor Charging. , 2021, , .		4
33	Acetonitrile-Free Organic Electrolyte for Textile Supercapacitor Applications. Journal of the Electrochemical Society, 2021, 168, 080520.	1.3	8
34	Dual-Band Dual-Mode Textile Antenna/Rectenna for Simultaneous Wireless Information and Power Transfer (SWIPT). IEEE Transactions on Antennas and Propagation, 2021, 69, 6322-6332.	3.1	52
35	Visible and Ultraviolet Light Emitting Electrochemical Cells Realised on Woven Textiles. Proceedings (mdpi), 2021, 68, .	0.2	4
36	RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open Journal of Antennas and Propagation, 2021, 2, 302-314.	2.5	37

#	Article	IF	CITATIONS
37	Millimeter-Wave Textile-Based Monopole Antenna for Wearable Wireless Power Transmission. , 2021, , .		2
38	CMOS UHF RFID Rectifier Design and Matching: an Analysis of Process and Temperature Variations. , 2021, , .		3
39	E-Textile RF Energy Harvesting and Storage using Organic-Electrolyte Carbon-Based Supercapacitors. , 2021, , .		0
40	Textile-based Hybrid Energy Storage System. , 2021, , .		0
41	Screen Printing Reliable Wearable Microstrip Antennas on Rough Textile Substrates. , 2021, , .		1
42	Textile-based Radio Frequency Energy Harvesting and Storage using Ultra-Compact Rectennas with High Effective-to-Physical Area Ratio. , 2021, , .		1
43	A new approach for obtaining PDMS ferroelectrets with random voids. , 2021, , .		0
44	Textile Manufacturing Compatible Triboelectric Nanogenerator with Alternating Positive and Negative Freestanding Grating Structure. Proceedings (mdpi), 2020, 32, .	0.2	0
45	Integration and Testing of a Three-Axis Accelerometer in a Woven E-Textile Sleeve for Wearable Movement Monitoring. Sensors, 2020, 20, 5033.	2.1	15
46	Millimeter-Wave Power Harvesting: A Review. IEEE Open Journal of Antennas and Propagation, 2020, 1, 560-578.	2.5	43
47	Real-World Performance of Sub-1 GHz and 2.4 GHz Textile Antennas for RF-Powered Body Area Networks. IEEE Access, 2020, 8, 133746-133756.	2.6	21
48	High-Efficiency Sub-1 GHz Flexible Compact Rectenna based on Parametric Antenna-Rectifier Co-Design. , 2020, , .		16
49	Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 2020, 62, 95-107.	1.2	68
50	Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4960-4972.	2.9	74
51	Sub-1 GHz Flexible Concealed Rectenna Yarn for High-Efficiency Wireless-Powered Electronic Textiles. , 2020, , .		7
52	Efficient Energy Conversion in Electrically Assisted Bicycles Using a Switched Reluctance Machine Under Torque Control. IEEE Access, 2020, 8, 202401-202411.	2.6	8
53	Screen Printed Flexible Water Activated Battery on Woven Cotton Textile as a Power Supply for E-Textile Applications. IEEE Access, 2020, 8, 206958-206965.	2.6	9
54	Meshed High-Impedance Matching Network-Free Rectenna Optimized for Additive Manufacturing. IEEE Open Journal of Antennas and Propagation, 2020, 1, 615-626.	2.5	28

#	Article	IF	CITATIONS
55	Textiles based ferroelectret generator with enhanced energy harvesting performance. , 2020, , .		1
56	Reliable UHF Long-Range Textile-Integrated RFID Tag Based on a Compact Flexible Antenna Filament. Sensors, 2020, 20, 3435.	2.1	38
57	Wash Testing of Electronic Yarn. Materials, 2020, 13, 1228.	1.3	21
58	The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Reports, 2020, 6, 148-156.	2.5	60
59	Wearable E-Textile Wireless RF Power Supply based on a Textile Supercapacitor and a Flexible Rectenna Filament. , 2020, , .		4
60	Rolling mass energy harvester for very low frequency of input vibrations. Mechanical Systems and Signal Processing, 2019, 125, 215-228.	4.4	35
61	Spray Coated Textile Solar Cells. , 2019, , .		1
62	Printable Piezoresistive Carbon Formulation for Stretch and Flex Sensors in E-Textile Applications. , 2019, , .		0
63	Textile based ferroelectret for foot pressure sensor. , 2019, , .		1
64	Processing of Printed Dye Sensitized Solar Cells on Woven Textiles. IEEE Journal of Photovoltaics, 2019, 9, 1020-1024.	1.5	21
65	E-Textiles for Healthy Ageing. Sensors, 2019, 19, 4463.	2.1	51
66	Water Activated Primary Textile Battery. , 2019, , .		4
67	Energy Harvesting Power Supplies for Electronic Textiles. , 2019, , .		3
68	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66, 104148.	8.2	66
69	Novel Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 216-225.	1.4	15
70	Optimization a structure of MEMS based PDMS ferroelectret for human body energy harvesting and sensing. Smart Materials and Structures, 2019, 28, 075010.	1.8	9
71	Integrating Flexible Filament Circuits for Eâ€∓extile Applications. Advanced Materials Technologies, 2019, 4, 1900176.	3.0	74
72	Embedded Capacitive Proximity and Touch Sensing Flexible Circuit System for Electronic Textile and Wearable Systems. IEEE Sensors Journal, 2019, 19, 6975-6985.	2.4	24

#	Article	IF	CITATIONS
73	Flexible Printed Monolithic-Structured Solid-State Dye Sensitized Solar Cells on Woven Glass Fibre Textile for Wearable Energy Harvesting Applications. Scientific Reports, 2019, 9, 1362.	1.6	37
74	Overcoming the Efficiency Barrier of Textile Antennas: A Transmission Lines Approach. Proceedings (mdpi), 2019, 32, .	0.2	5
75	Characterizing and Modelling Non-Linear Rectifiers for RF Energy Harvesting. , 2019, , .		1
76	Modelling Reliable Electrical Conductors for E-Textile Circuits on Polyimide Filaments. Proceedings (mdpi), 2019, 32, .	0.2	0
77	Improved charge stability in PTFE coatings for PDMS ferroelectrets. , 2019, , .		3
78	Calendar Life of Textile Supercapacitors. , 2019, , .		0
79	Electrode for Wearable Electrotherapy. Proceedings (mdpi), 2019, 32, .	0.2	3
80	Flexible textile power module. Journal of Physics: Conference Series, 2019, 1407, 012002.	0.3	0
81	Optimization of Carbon Electrodes for Solid-State E-Textile Supercapacitors. Journal of Physics: Conference Series, 2019, 1407, 012059.	0.3	6
82	Textile-based freestanding triboelectric-layer nanogenerator with alternate positive and negative grating structure. Journal of Physics: Conference Series, 2019, 1407, 012124.	0.3	4
83	Textile based ferroelectret for wearable energy harvesting. Journal of Physics: Conference Series, 2019, 1407, 012117.	0.3	0
84	Millimeter-Wave Textile Antenna for on-Body RF Energy Harvesting in Future 5G Networks. , 2019, , .		35
85	Integration of temperature sensors in fabrics. , 2019, , .		5
86	Encapsulation Process and Materials Evaluation for E-Textile Gas Sensor. Proceedings (mdpi), 2019, 32,	0.2	1
87	Wearable Textile Power Module Based on Flexible Ferroelectret and Supercapacitor. Energy Technology, 2019, 7, 1800938.	1.8	23
88	Flexible 2.4 GHz Node for Body Area Networks With a Compact High-Gain Planar Antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 49-53.	2.4	33
89	Encapsulated Textile Organic Solar Cells Fabricated by Spray Coating. ChemistrySelect, 2019, 4, 407-412.	0.7	40
90	Recent progress on textile-based triboelectric nanogenerators. Nano Energy, 2019, 55, 401-423.	8.2	184

#	Article	IF	CITATIONS
91	PDMS-ZNO Composite Textile Ferroelectret For Human Body Energy Harvesting. , 2019, , .		1
92	Integrated Flexible Textile Supercapacitor Fabricated in a Polyester-Cotton Fabric. Proceedings (mdpi), 2019, 32, 15.	0.2	5
93	Energy-harvesting materials for smart fabrics and textiles. MRS Bulletin, 2018, 43, 214-219.	1.7	29
94	Fabrication Techniques for Manufacturing Flexible Coils on Textiles for Inductive Power Transfer. IEEE Sensors Journal, 2018, 18, 2599-2606.	2.4	51
95	An easy to assemble ferroelectret for human body energy harvesting. Smart Materials and Structures, 2018, 27, 084005.	1.8	23
96	CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application. Integrated Ferroelectrics, 2018, 187, 70-79.	0.3	9
97	Stress Analysis and Optimization of a Flip Chip on Flex Electronic Packaging Method for Functional Electronic Textiles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 186-194.	1.4	12
98	Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures. Applied Physics Letters, 2018, 112, .	1.5	18
99	Solidâ€State Supercapacitor Fabricated in a Single Woven Textile Layer for Eâ€Textiles Applications. Advanced Engineering Materials, 2018, 20, 1700860.	1.6	53
100	A Flexible 2.45-CHz Power Harvesting Wristband With Net System Output From â^24.3 dBm of RF Power. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 380-395.	2.9	121
101	Functional Electronic Textiles: Circuit Integration and Energy Harvesting Power Supplies. , 2018, , .		3
102	Investigation of Low Temperature Processed Titanium Dioxide (TiO2) Films for Printed Dye Sensitized Solar Cells (DSSCs) for Large Area Flexible Applications. Materials Today: Proceedings, 2018, 5, 13846-13854.	0.9	29
103	Screen Printed Dye-Sensitized Solar Cells (DSSCs) on Woven Polyester Cotton Fabric for Wearable Energy Harvesting Applications. Materials Today: Proceedings, 2018, 5, 13753-13758.	0.9	35
104	Optimized Process of Fully Spray-Coated Organic Solar Cells on Woven Polyester Cotton Fabrics. Materials Today: Proceedings, 2018, 5, 13745-13752.	0.9	9
105	Textile-Based Flexible Coils for Wireless Inductive Power Transmission. Applied Sciences (Switzerland), 2018, 8, 912.	1.3	15
106	Solution Processed Organic Solar Cells on Textiles. IEEE Journal of Photovoltaics, 2018, 8, 1710-1715.	1.5	26
107	Metal Layer reinforced multilayer ferroelectret-based energy harvester. Journal of Physics: Conference Series, 2018, 1052, 012115.	0.3	2
108	An automated process for inclusion of package dies and circuitry within a textile yarn. , 2018, , .		3

An automated process for inclusion of package dies and circuitry within a textile yarn. , 2018, , . 108

#	Article	IF	CITATIONS
109	Development of User-Friendly Wearable Electronic Textiles for Healthcare Applications. Sensors, 2018, 18, 2410.	2.1	49
110	Improving the integration of e-textile microsystems' encapsulation by modifying PDMS formulation , 2018, , .		2
111	The thickness and material optimization of flexible electronic packaging for functional electronic textile. , 2018, , .		1
112	An all screen-printed free-standing piezoelectric diaphragm for application on textile. , 2018, , .		0
113	Modelling and experimental validation of the effect of the elastic properties of fabrics on the durability of screen printed e-textiles. Smart Materials and Structures, 2018, 27, 075046.	1.8	12
114	Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 2017, 33, 146-156.	8.2	89
115	Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester. Sensors and Actuators A: Physical, 2017, 256, 1-11.	2.0	29
116	Intermittently-powered energy harvesting step counter for fitness tracking. , 2017, , .		10
117	A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring. Smart Materials and Structures, 2017, 26, 025029.	1.8	13
118	Stress Analysis of Flexible Packaging for the Integration of Electronic Components within Woven Textiles. , 2017, , .		3
119	Wearable and autonomous computing for future smart cities: Open challenges. , 2017, , .		19
120	Improving the Durability of Screen Printed Conductors on Woven Fabrics for E-Textile Applications. Proceedings (mdpi), 2017, 1, 613.	0.2	4
121	Smart Textiles for Smart Home Control and Enriching Future Wireless Sensor Network Data. Smart Sensors, Measurement and Instrumentation, 2017, , 159-183.	0.4	13
122	A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester. Journal of Physics: Conference Series, 2016, 773, 012100.	0.3	3
123	Energy Neutral Activity Monitoring: Wearables Powered by Smart Inductive Charging Surfaces. , 2016, ,		8
124	Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion. Journal of Physics: Conference Series, 2016, 773, 012056.	0.3	4
125	Screen Printable Flexible BiTe–SbTe-Based Composite Thermoelectric Materials on Textiles for Wearable Applications. IEEE Transactions on Electron Devices, 2016, 63, 4024-4030.	1.6	61
126	Investigation and improvement of the dispenser printing of electrical interconnections for smart fabric applications. Smart Materials and Structures, 2016, 25, 105021.	1.8	7

#	Article	IF	CITATIONS
127	Autonomy is the key. , 2016, , .		3
128	Novel thick-foam ferroelectret with engineered voids for energy harvesting applications. Journal of Physics: Conference Series, 2016, 773, 012030.	0.3	1
129	Integrated Flexible Solid-State Supercapacitor Fabricated In A Single Fabric Layer. Journal of Physics: Conference Series, 2016, 773, 012086.	0.3	Ο
130	PDMS/PVA composite ferroelectret for improved energy harvesting performance. Journal of Physics: Conference Series, 2016, 773, 012051.	0.3	3
131	(Invited) Tunnel-Barrier Rectifiers for Optical Nantennas. ECS Transactions, 2016, 72, 287-299.	0.3	9
132	An electromechanical model of ferroelectret for energy harvesting. Smart Materials and Structures, 2016, 25, 045010.	1.8	11
133	Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. Journal of Materials Chemistry A, 2016, 4, 5561-5568.	5.2	57
134	Flexible screen printed thermoelectric generator with enhanced processes and materials. Sensors and Actuators A: Physical, 2016, 238, 196-206.	2.0	94
135	Durability of screen printed electrical interconnections on woven textiles. , 2015, , .		9
136	Screen-printed free-standing piezoelectric devices using low temperature process. , 2015, , .		1
137	Fully directâ€write dispenser printed dipole antenna on woven polyester cotton fabric for wearable electronics applications. Electronics Letters, 2015, 51, 1306-1308.	0.5	11
138	Near field wireless power transfer using curved relay resonators for extended transfer distance. Journal of Physics: Conference Series, 2015, 660, 012136.	0.3	5
139	Design of an Inductive Power Transfer System with Flexible Coils for Body-worn Applications. Journal of Physics: Conference Series, 2015, 660, 012135.	0.3	1
140	Multilayer ferroelectret-based energy harvesting insole. Journal of Physics: Conference Series, 2015, 660, 012118.	0.3	16
141	Flexible solid-state fabric based supercapacitor. Journal of Physics: Conference Series, 2015, 660, 012074.	0.3	5
142	Optimization of a PDMS structure for energy harvesting under compressive forces. Journal of Physics: Conference Series, 2015, 660, 012041.	0.3	5
143	Vibration energy harvesting: fabrication, miniaturisation and applications. Proceedings of SPIE, 2015, , .	0.8	5
144	Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Materials and Structures, 2015, 24, 125028.	1.8	27

#	Article	IF	CITATIONS
145	Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates. Smart Materials and Structures, 2015, 24, 115030.	1.8	13
146	All dispenser printed flexible 3D structured thermoelectric generators. Journal of Physics: Conference Series, 2015, 660, 012096.	0.3	12
147	Scaling effects for piezoelectric energy harvesters. Proceedings of SPIE, 2015, , .	0.8	1
148	Energy harvesting study on single and multilayer ferroelectret foams under compressive force. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1360-1368.	1.8	40
149	A 2.45 GHz rectenna screen-printed on polycotton for on-body RF power transfer and harvesting. , 2015, , .		13
150	Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment. , 2015, , .		9
151	A miniature piezoelectric energy harvester for air flows. , 2015, , .		1
152	Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sensors and Actuators A: Physical, 2015, 221, 60-66.	2.0	66
153	The effect of the type of illumination on the energy harvesting performance of solar cells. Solar Energy, 2015, 111, 21-29.	2.9	87
154	Printed Textile-Based Electronic Devices. , 2015, , 653-687.		5
155	Editorial: Selected papers from the 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (powerMEMS 2013). Journal of Micromechanics and Microengineering, 2014, 24, 100201.	1.5	0
156	Flexible screen printed thick film thermoelectric generator with reduced material resistivity. Journal of Physics: Conference Series, 2014, 557, 012016.	0.3	31
157	Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing. Journal of Physics: Conference Series, 2014, 557, 012083.	0.3	6
158	Real time emotion detection within a wireless sensor network and its impact on power consumption. IET Wireless Sensor Systems, 2014, 4, 183-190.	1.3	6
159	Printed frequency selective surfaces on textiles. Electronics Letters, 2014, 50, 916-917.	0.5	59
160	Comparisons of Energy Sources for Autonomous In-car Wireless Tags for Asset Tracking and Parking Applications. Procedia Engineering, 2014, 87, 783-786.	1.2	2
161	A Hip Implant Energy Harvester. Journal of Physics: Conference Series, 2014, 557, 012038.	0.3	5
162	Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications. Journal of Physics: Conference Series, 2014, 557, 012044.	0.3	1

#	Article	IF	CITATIONS
163	A novel fabrication process to realize a valveless micropump on a flexible substrate. Smart Materials and Structures, 2014, 23, 025034.	1.8	17
164	Screen printed fabric electrode array for wearable functional electrical stimulation. Sensors and Actuators A: Physical, 2014, 213, 108-115.	2.0	90
165	An investigation into the durability of screen-printed conductive tracks on textiles. Measurement Science and Technology, 2014, 25, 025006.	1.4	45
166	Review of the application of energy harvesting in buildings. Measurement Science and Technology, 2014, 25, 012002.	1.4	217
167	The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sensors and Actuators A: Physical, 2014, 206, 35-41.	2.0	88
168	Fuzzy logic based emotion classification. , 2014, , .		24
169	A Smart Textile Based Facial EMG and EOG Computer Interface. IEEE Sensors Journal, 2014, 14, 393-400.	2.4	79
170	Inkjet-Printed Microstrip Patch Antennas Realized on Textile for Wearable Applications. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71-74.	2.4	147
171	Wind Energy Harvesting for Recharging Wireless Sensor Nodes: Brief Review and A Case Study. , 2014, , 1-30.		Ο
172	An investigation of PDMS structures for optimized ferroelectret performance. Journal of Physics: Conference Series, 2014, 557, 012104.	0.3	13
173	Development of a low temperature PZT/polymer paste for screen printed flexible electronics applications. , 2014, , .		1
174	Functional Electronic Screen-printing – Electroluminescent Lamps on Fabric. Procedia Engineering, 2014, 87, 1513-1516.	1.2	12
175	Screen Printed Free-standing Resonator with Piezoelectric Excitation and Detection on Flexible Substrate. Procedia Engineering, 2014, 87, 947-950.	1.2	2
176	Water Based PVA Sacrificial Material for Low Temperature MEMS Fabrication and Applications on e-textiles. Procedia Engineering, 2014, 87, 1565-1568.	1.2	4
177	Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays. Sensors and Actuators A: Physical, 2013, 203, 11-19.	2.0	51
178	Real time eye blink noise removal from EEG signals using morphological component analysis. , 2013, 2013, 13-6.		17
179	An Evaluation of Otoacoustic Emissions as a Biometric. IEEE Transactions on Information Forensics and Security, 2013, 8, 174-183.	4.5	17
180	Novel Miniature Airflow Energy Harvester for Wireless Sensing Applications in Buildings. IEEE Sensors Journal, 2013, 13, 691-700.	2.4	45

#	Article	IF	CITATIONS
181	A screen printable sacrificial fabrication process to realise a cantilever on fabric using a piezoelectric layer to detect motion for wearable applications. Sensors and Actuators A: Physical, 2013, 203, 241-248.	2.0	19
182	Magnetic tuning of a kinetic energy harvester using variable reluctance. Sensors and Actuators A: Physical, 2013, 189, 266-275.	2.0	30
183	Inkjet printed dipole antennas on textiles for wearable communications. IET Microwaves, Antennas and Propagation, 2013, 7, 760-767.	0.7	104
184	Waterproof and durable screen printed silver conductive tracks on textiles. Textile Reseach Journal, 2013, 83, 2023-2031.	1.1	99
185	Tunable vibration energy harvester. , 2013, , .		2
186	A miniature airflow energy harvester from piezoelectric materials. Journal of Physics: Conference Series, 2013, 476, 012057.	0.3	8
187	Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Measurement Science and Technology, 2013, 24, 075104.	1.4	35
188	Screen printed piezoelectric films for energy harvesting. Advances in Applied Ceramics, 2013, 112, 79-84.	0.6	7
189	Fabric based supercapacitor. Journal of Physics: Conference Series, 2013, 476, 012114.	0.3	4
190	Novel screen printed humidity sensor on textiles for smart textile applications. , 2013, , .		13
191	Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible PZT-polymer composites. Journal of Physics: Conference Series, 2013, 476, 012108.	0.3	24
192	Screen printed flexible Bi ₂ Te ₃ -Sb ₂ Te ₃ based thermoelectric generator. Journal of Physics: Conference Series, 2013, 476, 012031.	0.3	52
193	A novel fabrication process to realise a valveless micropump on a flexible substrate. , 2013, , .		1
194	A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data. Smart Materials and Structures, 2013, 22, 075022.	1.8	57
195	A novel piezoelectric energy harvester designed for single-supply pre-biasing circuit. Journal of Physics: Conference Series, 2013, 476, 012134.	0.3	3
196	A broadband electromagnetic energy harvester with a coupled bistable structure. Journal of Physics: Conference Series, 2013, 476, 012070.	0.3	14
197	The 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2013). Journal of Physics: Conference Series, 2013, 476, 011001.	0.3	3
198	Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester. Journal of Physics: Conference Series, 2013, 476, 012040.	0.3	2

#	Article	IF	CITATIONS
199	Printed thick-film mechanical microsystems (MEMS). , 2012, , 259-277.		2
200	Practical Implementation of a Novel Wind Energy Harvesting Network. Procedia Engineering, 2012, 47, 961-964.	1.2	0
201	Screen Printed Capacitive Free-standing Cantilever Beams used as a Motion Detector for Wearable Sensors. Procedia Engineering, 2012, 47, 165-169.	1.2	11
202	A novel fabrication process to realise piezoelectric cantilever structures for smart fabric sensor applications. , 2012, , .		5
203	General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters. Smart Materials and Structures, 2012, 21, 105039.	1.8	33
204	An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications. , 2012, , .		29
205	Vibration energy harvesting using the Halbach array. Smart Materials and Structures, 2012, 21, 075020.	1.8	70
206	Performance of Linear Vibration Energy Harvesters under Broadband Vibrations with Multiple Frequency Peaks. Procedia Engineering, 2012, 47, 5-8.	1.2	2
207	Kinetic Energy Harvesting. , 2011, , 1-77.		33
208	Improving Output Power of Piezoelectric Energy Harvesters using Multilayer Structures. Procedia Engineering, 2011, 25, 199-202.	1.2	31
209	A comparison of verification in the temporal and cepstrum-transformed domains of Transient Evoked Otoacoustic Emissions for biometric identification. International Journal of Biometrics, 2011, 3, 246.	0.3	7
210	A credit card sized self powered smart sensor node. Sensors and Actuators A: Physical, 2011, 169, 317-325.	2.0	73
211	HeLa Cell Transfection Using a Novel Sonoporation System. IEEE Transactions on Biomedical Engineering, 2011, 58, 927-934.	2.5	23
212	Optimization of the Electrodeposition Process of High-Performance Bismuth Antimony Telluride Compounds for Thermoelectric Applications. Langmuir, 2010, 26, 16980-16985.	1.6	41
213	Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensors and Actuators A: Physical, 2010, 158, 284-293.	2.0	165
214	Correlation of Microstructural Properties With Thermoelectric Performance of Bi _{0.5} Sb _{1.5} Te ₃ Films Fabricated by Electroplating. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	2
215	A tunable kinetic energy harvester with dynamic over range protection. Smart Materials and Structures, 2010, 19, 115005.	1.8	27

A novel miniature wind generator for wireless sensing applications. , 2010, , .

10

#	Article	IF	CITATIONS
217	Ion Track Nanolithography Using Thick Cross-Linked Poly(methyl methacrylate) 950 Photoresist. Japanese Journal of Applied Physics, 2010, 49, 06GE07.	0.8	1
218	Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Measurement Science and Technology, 2010, 21, 022001.	1.4	483
219	A new 2-D model of a thin annular disk using a modified assumption. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 421-426.	1.7	1
220	Design of a Novel High Frequency Ultrasound Annular Array. Procedia Chemistry, 2009, 1, 413-416.	0.7	2
221	Electromagnetic Energy Harvesting. , 2009, , 129-161.		59
222	An automated design flow for vibration-based energy harvester systems. , 2009, , .		8
223	High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography. Physical Chemistry Chemical Physics, 2009, 11, 3584.	1.3	32
224	Self powered wireless sensors for condition monitoring applications. Sensor Review, 2009, 29, 38-43.	1.0	17
225	The biometric potential of transient otoacoustic emissions. International Journal of Biometrics, 2009, 1, 349.	0.3	18
226	Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sensors and Actuators A: Physical, 2008, 145-146, 336-342.	2.0	118
227	Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness. Materials Letters, 2008, 62, 651-654.	1.3	10
228	Towards a nanostructured thermoelectric generator using ion-track lithography. Journal of Micromechanics and Microengineering, 2008, 18, 104015.	1.5	29
229	Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 2008, 19, 125202.	1.4	207
230	Wireless Sensor System Powered by an Electromagnetic Vibration Energy Harvester. Measurement and Control, 2008, 41, 109-113.	0.9	1
231	Development of nanostructures for thermoelectric microgenerators using ion-track lithography. Electronics Letters, 2008, 44, 500.	0.5	9
232	Micro and Nanotechnologies for Thermoelectric Generators. Measurement and Control, 2008, 41, 138-142.	0.9	0
233	Integrated approach to energy harvester mixed technology modelling and performance optimisation. , 2008, , .		6
234	Autonomous Low Power Microsystem Powered by Vibration Energy Harvesting. , 2007, , .		26

Stephen Beeby

#	Article	IF	CITATIONS
235	An integrated approach to energy harvester modeling and performance optimization. , 2007, , .		8
236	Fabrication and Test of Integrated Micro-Scale Vibration Based Electromagnetic Generator. , 2007, , .		11
237	Sensory motor systems of artificial and natural hands. International Journal of Surgery, 2007, 5, 436-440.	1.1	11
238	A Novel Thick-Film Piezoelectric Slip Sensor for a Prosthetic Hand. IEEE Sensors Journal, 2007, 7, 752-761.	2.4	104
239	A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 2007, 17, 1257-1265.	1.5	1,203
240	Thick-film piezoceramics and devices. Journal of Electroceramics, 2007, 19, 97-112.	0.8	47
241	Photoresist patterned thick-film piezoelectric elements on silicon. Journal of Electroceramics, 2007, 19, 327-331.	0.8	3
242	Scaling effects for electromagnetic vibrational power generators. Microsystem Technologies, 2007, 13, 1637-1645.	1.2	51
243	Experimental comparison of macro and micro scale electromagnetic vibration powered generators. Microsystem Technologies, 2007, 13, 1647-1653.	1.2	47
244	Vibration based electromagnetic micropower generator on silicon. Journal of Applied Physics, 2006, 99, 08P511.	1.1	66
245	A multilayer thick-film PZT actuator for MEMs applications. Sensors and Actuators A: Physical, 2006, 132, 311-316.	2.0	52
246	Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 2006, 17, R175-R195.	1.4	2,502
247	Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsystem Technologies, 2006, 12, 1071-1077.	1.2	83
248	Optimization of an Electromagnetic Energy Harvesting Device. IEEE Transactions on Magnetics, 2006, 42, 3509-3511.	1.2	145
249	Electromagnetic micro power generator on Silicon for wireless sensor nodes. , 2006, , .		1
250	Thick-film force and slip sensors for a prosthetic hand. Sensors and Actuators A: Physical, 2005, 123-124, 162-171.	2.0	44
251	Fluid modelling of microfluidic separator channels. Sensors and Actuators B: Chemical, 2005, 111-112, 455-462.	4.0	12
252	Performance of a micro-engineered ultrasonic particle manipulator. Sensors and Actuators B: Chemical, 2005, 111-112, 481-486.	4.0	22

#	Article	IF	CITATIONS
253	An improved thick-film piezoelectric material by powder blending and enhanced processing parameters. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 10-16.	1.7	22
254	Thick-film force, slip and temperature sensors for a prosthetic hand. Measurement Science and Technology, 2005, 16, 931-941.	1.4	47
255	Acoustic power output measurements for thick-film PZT transducers. Electronics Letters, 2004, 40, 636.	0.5	9
256	A dual frequency, ultrasonic, microengineered particle manipulator. Ultrasonics, 2004, 42, 139-144.	2.1	34
257	Effects of the binder material on the mechanical properties of thick-film magnetostrictive materials. Sensors and Actuators A: Physical, 2004, 110, 365-370.	2.0	7
258	Improving the piezoelectric properties of thick-film PZT: the influence of paste composition, powder milling process and electrode material. Sensors and Actuators A: Physical, 2004, 110, 378-384.	2.0	37
259	An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical, 2004, 110, 344-349.	2.0	644
260	An investigation of self-powered systems for condition monitoring applications. Sensors and Actuators A: Physical, 2004, 110, 171-176.	2.0	109
261	Design and fabrication of thick-film PZT-metallic triple beam resonators. Sensors and Actuators A: Physical, 2004, 115, 401-407.	2.0	17
262	Screen Printed PZT Composite Thick Films. Integrated Ferroelectrics, 2004, 63, 89-92.	0.3	18
263	Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements. Journal Physics D: Applied Physics, 2004, 37, 1074-1078.	1.3	101
264	Thick-Film Piezoelectric Materials for High Temperature Applications. Ferroelectrics, 2004, 313, 63-69.	0.3	2
265	Investigation into the uniqueness of neonate transient otoacoustic emissions. Acoustics Research Letters Online: ARLO, 2004, 5, 139-142.	0.7	0
266	A silicon microfluidic ultrasonic separator. Sensors and Actuators B: Chemical, 2003, 95, 425-434.	4.0	133
267	Screen Printed PZT Thick Films Using Composite Film Technology. Integrated Ferroelectrics, 2003, 54, 651-658.	0.3	21
268	Thick-film PZT-metallic triple beam resonator. Electronics Letters, 2003, 39, 982.	0.5	12
269	The formulation and processing of a thick-film magnetostrictive material. Measurement Science and Technology, 2002, 13, 59-64.	1.4	8
270	Time constant and lateral resonances of thermal vertical bimorph actuators. Journal of Micromechanics and Microengineering, 2002, 12, 410-413.	1.5	28

#	Article	IF	CITATIONS
271	A novel multi-degree-of-freedom thick-film ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 151-158.	1.7	74
272	Silicon micromechanical resonator with thick-film printed vibration excitation and detection mechanisms. Sensors and Actuators A: Physical, 2001, 88, 189-197.	2.0	16
273	Microprocessor implemented self-validation of thick-film PZT/silicon accelerometer. Sensors and Actuators A: Physical, 2001, 92, 168-174.	2.0	19
274	Design and fabrication of a new vibration-based electromechanical power generator. Sensors and Actuators A: Physical, 2001, 92, 335-342.	2.0	372
275	Towards a piezoelectric vibration-powered microgenerator. IET Science, Measurement and Technology, 2001, 148, 68.	0.7	275
276	A novel thick-film piezoelectric micro-generator. Smart Materials and Structures, 2001, 10, 850-852.	1.8	168
277	Planar Signal Extraction Techniques for a Self-Powered Microsystem. Measurement and Control, 2001, 34, 37-39.	0.9	1
278	Design and Modelling of a Vibration-Powered Micro-Generator. Measurement and Control, 2001, 34, 267-271.	0.9	7
279	A method to determine the ageing rate of thick-film PZT layers. Measurement Science and Technology, 2001, 12, 663-670.	1.4	16
280	Design and fabrication of a low-cost microengineered silicon pressure sensor with linearised output. IET Science, Measurement and Technology, 2000, 147, 127-130.	0.7	9
281	Plucked excitation of micromachined silicon DETF resonators. Electronics Letters, 2000, 36, 1119.	0.5	9
282	Thick-film magnetostrictive material for MEMS. Electronics Letters, 2000, 36, 332.	0.5	18
283	Design and fabrication of a micromachined silicon accelerometer with thick-film printed PZT sensors. Journal of Micromechanics and Microengineering, 2000, 10, 322-328.	1.5	42
284	An investigation into the effect of modified firing profiles on the piezoelectric properties of thick-film PZT layers on silicon. Measurement Science and Technology, 2000, 11, 526-531.	1.4	37
285	Micromachined silicon resonant strain gauges fabricated using SOI wafer technology. Journal of Microelectromechanical Systems, 2000, 9, 104-111.	1.7	28
286	Thick film PZT/micromachined silicon accelerometer. Electronics Letters, 1999, 35, 2060.	0.5	28
287	Processing of PZT piezoelectric thick films on silicon for microelectromechancial systems. Journal of Micromechanics and Microengineering, 1999, 9, 218-229.	1.5	95
288	Silicon micromachining processes combined with thick-film printed lead zirconate titanate actuators for microelectromechanical systems. Materials Letters, 1999, 40, 187-191.	1.3	9

#	Article	IF	CITATIONS
289	Modelling and optimization of micromachined silicon resonators. Journal of Micromechanics and Microengineering, 1995, 5, 103-105.	1.5	27
290	Vibration of thin-walled ring-stiffened circular cylinders and cones. Thin-Walled Structures, 1994, 18, 177-190.	2.7	9
291	An ultrasonic MEMS particle separator with thick film piezoelectric actuation. , 0, , .		1
292	Fabrication of a Flexible Aqueous Textile Zinc-Ion Battery in a Single Fabric Layer. Frontiers in Electronics, 0, 3, .	2.0	3
293	Flexible Water-Activated Battery on a Polyester–Cotton Textile. , 0, , .		Ο
294	Solution-Processed Organic Light-Emitting Electrochemical Cells (OLECs) with Blue Colour Emission via Silver-Nanowires (AgNWs) as Cathode. , 0, , .		0