Stephen J Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2777610/publications.pdf Version: 2024-02-01

		13099	16650
321	17,845	68	123
papers	citations	h-index	g-index
327	327	327	12675
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improved survival in multiple myeloma and the impact of novel therapies. Blood, 2008, 111, 2516-2520.	1.4	2,022
2	Oncolytic virotherapy. Nature Biotechnology, 2012, 30, 658-670.	17.5	1,150
3	Engineering targeted viral vectors for gene therapy. Nature Reviews Genetics, 2007, 8, 573-587.	16.3	606
4	History of Oncolytic Viruses: Genesis to Genetic Engineering. Molecular Therapy, 2007, 15, 651-659.	8.2	567
5	Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood, 2004, 103, 1641-1646.	1.4	306
6	High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus. Cancer Research, 2004, 64, 4919-4926.	0.9	278
7	Phase I Trial of Intraperitoneal Administration of an Oncolytic Measles Virus Strain Engineered to Express Carcinoembryonic Antigen for Recurrent Ovarian Cancer. Cancer Research, 2010, 70, 875-882.	0.9	264
8	Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy. Mayo Clinic Proceedings, 2014, 89, 926-933.	3.0	240
9	Rescue and propagation of fully retargeted oncolytic measles viruses. Nature Biotechnology, 2005, 23, 209-214.	17.5	234
10	Retroviral vectors displaying functional antibody fragments. Nucleic Acids Research, 1993, 21, 1081-1085.	14.5	225
11	Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood, 2001, 97, 3746-3754.	1.4	223
12	Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clinical Cancer Research, 2002, 8, 2210-6.	7.0	219
13	Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Research, 2003, 63, 2462-9.	0.9	210
14	Engineering microRNA responsiveness to decrease virus pathogenicity. Nature Medicine, 2008, 14, 1278-1283.	30.7	197
15	Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Research, 2002, 62, 4656-62.	0.9	193
16	Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell, 2018, 33, 599-605.	16.8	178
17	Mesenchymal Stem Cell Carriers Protect Oncolytic Measles Viruses from Antibody Neutralization in an Orthotopic Ovarian Cancer Therapy Model. Clinical Cancer Research, 2009, 15, 7246-7255.	7.0	176
18	Viruses as anticancer drugs. Trends in Pharmacological Sciences, 2007, 28, 326-333.	8.7	174

#	Article	IF	CITATIONS
19	Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer Journal, 2018, 8, 59.	6.2	171
20	Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood, 2001, 98, 2002-2007.	1.4	170
21	Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nature Medicine, 2002, 8, 527-531.	30.7	160
22	Oncolytic Measles Virus Expressing the Sodium Iodide Symporter to Treat Drug-Resistant Ovarian Cancer. Cancer Research, 2015, 75, 22-30.	0.9	157
23	RNA viruses as virotherapy agents. Cancer Gene Therapy, 2002, 9, 961-966.	4.6	139
24	Measles Virus for Cancer Therapy. Current Topics in Microbiology and Immunology, 2009, 330, 213-241.	1.1	136
25	Modeling of cancer virotherapy with recombinant measles viruses. Journal of Theoretical Biology, 2008, 252, 109-122.	1.7	131
26	Infected Cell Carriers: A New Strategy for Systemic Delivery of Oncolytic Measles Viruses in Cancer Virotherapy. Molecular Therapy, 2007, 15, 114-122.	8.2	123
27	Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Δ51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood, 2007, 110, 2342-2350.	1.4	121
28	Single-Chain Antibody Displayed on a Recombinant Measles Virus Confers Entry through the Tumor-Associated Carcinoembryonic Antigen. Journal of Virology, 2001, 75, 2087-2096.	3.4	119
29	Therapy for Relapsed Multiple Myeloma. Mayo Clinic Proceedings, 2017, 92, 578-598.	3.0	115
30	Mathematical modeling of cancer radiovirotherapy. Mathematical Biosciences, 2006, 199, 55-78.	1.9	114
31	The Sodium Iodide Symporter (NIS) as an Imaging Reporter for Gene, Viral, and Cell-based Therapies. Current Gene Therapy, 2012, 12, 33-47.	2.0	114
32	Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology, 2006, 44, 1465-1477.	7.3	110
33	Designing and building oncolytic viruses. Future Virology, 2017, 12, 193-213.	1.8	109
34	Recombinant Measles Viruses Efficiently Entering Cells through Targeted Receptors. Journal of Virology, 2000, 74, 9928-9936.	3.4	108
35	Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Experimental Hematology, 2006, 34, 713-720.	0.4	107
36	Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Current Cancer Drug Targets, 2018, 18, 177-187.	1.6	107

#	Article	IF	CITATIONS
37	Dual Therapy of Ovarian Cancer Using Measles Viruses Expressing Carcinoembryonic Antigen and Sodium Iodide Symporter. Clinical Cancer Research, 2006, 12, 1868-1875.	7.0	106
38	Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer. Journal of Translational Medicine, 2013, 11, 20.	4.4	106
39	Treatment of Immunoglobulin Light Chain Amyloidosis. Mayo Clinic Proceedings, 2015, 90, 1054-1081.	3.0	106
40	Retargeted Oncolytic Measles Strains Entering via the EGFRvIII Receptor Maintain Significant Antitumor Activity against Gliomas with Increased Tumor Specificity. Cancer Research, 2006, 66, 11840-11850.	0.9	101
41	Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opinion on Biological Therapy, 2009, 9, 1163-1176.	3.1	101
42	A Proline-Rich Motif Downstream of the Receptor Binding Domain Modulates Conformation and Fusogenicity of Murine Retroviral Envelopes. Journal of Virology, 1998, 72, 9955-9965.	3.4	101
43	Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood, 2016, 127, 1449-1458.	1.4	99
44	Attenuation of Vesicular Stomatitis Virus Encephalitis through MicroRNA Targeting. Journal of Virology, 2010, 84, 1550-1562.	3.4	96
45	A Gene Delivery System Activatable by Disease-Associated Matrix Metalloproteinases. Human Gene Therapy, 1997, 8, 729-738.	2.7	94
46	Use of Viral Fusogenic Membrane Glycoproteins as Novel Therapeutic Transgenes in Gliomas. Human Gene Therapy, 2001, 12, 811-821.	2.7	93
47	Oncolytic Virotherapy: A Contest between Apples and Oranges. Molecular Therapy, 2017, 25, 1107-1116.	8.2	93
48	Genetically targeted radiotherapy for multiple myeloma. Blood, 2003, 102, 489-496.	1.4	92
49	Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell–activating polypeptide. Blood, 2002, 99, 2342-2350.	1.4	91
50	MicroRNAs and the Regulation of Vector Tropism. Molecular Therapy, 2009, 17, 409-416.	8.2	90
51	Oncolytic Viruses: Priming Time for Cancer Immunotherapy. BioDrugs, 2019, 33, 485-501.	4.6	90
52	Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate, 2009, 69, 82-91.	2.3	89
53	Modifying the host range properties of retroviral vectors. Journal of Gene Medicine, 1999, 1, 300-311.	2.8	87
54	Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget, 2015, 6, 33165-33177.	1.8	87

#	Article	IF	CITATIONS
55	A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Research and Treatment, 2006, 99, 177-184.	2.5	86
56	Epidermal Growth Factor Receptor (EGFR)–Retargeted Measles Virus Strains Effectively Target EGFR- or EGFRvIII Expressing Gliomas. Molecular Therapy, 2007, 15, 677-686.	8.2	84
57	Noninvasive Imaging and Radiovirotherapy of Prostate Cancer Using an Oncolytic Measles Virus Expressing the Sodium Iodide Symporter. Molecular Therapy, 2009, 17, 2041-2048.	8.2	82
58	In vivo imaging and tumor therapy with the sodium iodide symporter. Journal of Cellular Biochemistry, 2003, 90, 1079-1086.	2.6	81
59	Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma: a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transplantation, 2019, 54, 353-367.	2.4	81
60	Activation of a Cell Entry Pathway Common to Type C Mammalian Retroviruses by Soluble Envelope Fragments. Journal of Virology, 2000, 74, 295-304.	3.4	79
61	Engineering Oncolytic Measles Virus to Circumvent the Intracellular Innate Immune Response. Molecular Therapy, 2007, 15, 588-597.	8.2	79
62	Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. Journal of Hepatology, 2013, 59, 999-1006.	3.7	79
63	Outcomes of patients with renal monoclonal immunoglobulin deposition disease. American Journal of Hematology, 2016, 91, 1123-1128.	4.1	76
64	Retargeting gene delivery using surface-engineered retroviral vector particles. Current Opinion in Biotechnology, 2001, 12, 461-466.	6.6	75
65	Clinical presentation and outcomes of patients with type 1 monoclonal cryoglobulinemia. American Journal of Hematology, 2017, 92, 668-673.	4.1	75
66	Activation of Membrane Fusion by Murine Leukemia Viruses Is Controlled in cis or in trans by Interactions between the Receptor-Binding Domain and a Conserved Disulfide Loop of the Carboxy Terminus of the Surface Glycoprotein. Journal of Virology, 2001, 75, 3685-3695.	3.4	73
67	Interleukin-13 Displaying Retargeted Oncolytic Measles Virus Strains Have Significant Activity Against Gliomas With Improved Specificity. Molecular Therapy, 2008, 16, 1556-1564.	8.2	73
68	Presentation and Outcomes of Localized Immunoglobulin Light Chain Amyloidosis. Mayo Clinic Proceedings, 2017, 92, 908-917.	3.0	72
69	In vivo selection of protease cleavage sites from retrovirus display libraries. Nature Biotechnology, 1998, 16, 951-954.	17.5	71
70	Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Research and Treatment, 2010, 122, 745-754.	2.5	71
71	Quantitative Molecular Imaging of Viral Therapy for Pancreatic Cancer Using an Engineered Measles Virus Expressing the Sodium-Iodide Symporter Reporter Gene. American Journal of Roentgenology, 2009, 192, 279-287.	2.2	70
72	Sodium Iodide Symporter (<i>NIS</i>)-Mediated Radiovirotherapy for Pancreatic Cancer. American Journal of Roentgenology, 2010, 195, 341-349.	2.2	69

#	Article	IF	CITATIONS
73	Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins. Journal of Virology, 2007, 81, 13149-13157.	3.4	68
74	Inverse Targeting of Retroviral Vectors: Selective Gene Transfer in a Mixed Population of Hematopoietic and Nonhematopoietic Cells. Blood, 1998, 91, 1802-1809.	1.4	67
75	Exploiting the high-affinity phosphonate–hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. Journal of Nanoparticle Research, 2008, 10, 141-150.	1.9	64
76	Tumor and Vascular Targeting of a Novel Oncolytic Measles Virus Retargeted against the Urokinase Receptor. Cancer Research, 2009, 69, 1459-1468.	0.9	64
77	Evaluation of an Attenuated Vesicular Stomatitis Virus Vector Expressing Interferon-Î ² for Use in Malignant Pleural Mesothelioma: Heterogeneity in Interferon Responsiveness Defines Potential Efficacy. Human Gene Therapy, 2010, 21, 51-64.	2.7	64
78	Systemic Therapy of Disseminated Myeloma in Passively Immunized Mice Using Measles Virus-infected Cell Carriers. Molecular Therapy, 2010, 18, 1155-1164.	8.2	64
79	PEGylation of Vesicular Stomatitis Virus Extends Virus Persistence in Blood Circulation of Passively Immunized Mice. Journal of Virology, 2013, 87, 3752-3759.	3.4	64
80	Depth of organ response in AL amyloidosis is associated with improved survival: grading the organ response criteria. Leukemia, 2018, 32, 2240-2249.	7.2	64
81	Revised diagnostic criteria for plasma cell leukemia: results of a Mayo Clinic study with comparison of outcomes to multiple myeloma. Blood Cancer Journal, 2018, 8, 116.	6.2	64
82	Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia, 2020, 34, 3310-3322.	7.2	64
83	Viral vector targeting. Current Opinion in Biotechnology, 1999, 10, 454-457.	6.6	63
84	Targeted Measles Virus Vector Displaying Echistatin Infects Endothelial Cells via αvβ3 and Leads to Tumor Regression. Cancer Research, 2005, 65, 5292-5300.	0.9	63
85	A Preclinical Large Animal Model of Adenovirus-Mediated Expression of the Sodium–Iodide Symporter for Radioiodide Imaging and Therapy of Locally Recurrent Prostate Cancer. Molecular Therapy, 2005, 12, 835-841.	8.2	62
86	Safety Studies on Intrahepatic or Intratumoral Injection of Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Rodents and Nonhuman Primates. Human Gene Therapy, 2010, 21, 451-462.	2.7	62
87	Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer. Cancer Gene Therapy, 2005, 12, 593-599.	4.6	61
88	Combined I-124 Positron Emission Tomography/Computed Tomography Imaging of NIS Gene Expression in Animal Models of Stably Transfected and Intravenously Transfected Tumor. Molecular Imaging and Biology, 2006, 8, 16-23.	2.6	61
89	Prostateâ€specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate, 2009, 69, 1128-1141.	2.3	61
90	Multiple myeloma and the road to personalised medicine. Lancet Oncology, The, 2011, 12, 617-619.	10.7	60

Stephen J Russell

#	Article	IF	CITATIONS
91	A Modern Primer on Light Chain Amyloidosis in 592 Patients With Mass Spectrometry–Verified Typing. Mayo Clinic Proceedings, 2019, 94, 472-483.	3.0	59
92	Retroviral Display of Functional Binding Domains Fused to the Amino Terminus of Influenza Hemagglutinin. Human Gene Therapy, 1999, 10, 1533-1544.	2.7	57
93	Oncolytic measles viruses for cancer therapy. Expert Opinion on Biological Therapy, 2004, 4, 1685-1692.	3.1	57
94	MicroRNAs and oncolytic viruses. Current Opinion in Virology, 2015, 13, 40-48.	5.4	57
95	Longâ€ŧerm outcome of patients with POEMS syndrome: An update of the Mayo Clinic experience. American Journal of Hematology, 2016, 91, 585-589.	4.1	57
96	PS-341–mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis. Experimental Hematology, 2005, 33, 784-795.	0.4	56
97	Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Science Translational Medicine, 2016, 8, 349ra99.	12.4	56
98	In Vivo Quantitation of Intratumoral Radioisotope Uptake Using Micro-Single Photon Emission Computed Tomography/Computed Tomography. Molecular Imaging and Biology, 2006, 8, 324-332.	2.6	55
99	Tumorâ€associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma. American Journal of Hematology, 2009, 84, 401-407.	4.1	54
100	Pomalidomide, bortezomib, and dexamethasone for patients with relapsed lenalidomide-refractory multiple myeloma. Blood, 2017, 130, 1198-1204.	1.4	54
101	Concentration of viral vectors by co-precipitation with calcium phosphate. Journal of Gene Medicine, 2001, 3, 188-194.	2.8	52
102	Use of attenuated paramyxoviruses for cancer therapy. Expert Review of Vaccines, 2010, 9, 1275-1302.	4.4	52
103	The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opinion on Biological Therapy, 2016, 16, 15-32.	3.1	52
104	A Hyperfusogenic Gibbon Ape Leukemia Envelope Glycoprotein: Targeting of a Cytotoxic Gene by Ligand Display. Human Gene Therapy, 2000, 11, 817-826.	2.7	51
105	Reengineering paramyxovirus tropism. Virology, 2004, 329, 217-225.	2.4	50
106	MicroRNA Antagonism of the Picornaviral Life Cycle: Alternative Mechanisms of Interference. PLoS Pathogens, 2010, 6, e1000820.	4.7	50
107	Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Scientific Reports, 2013, 3, 2375.	3.3	50
108	Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H392-H407.	3.2	49

#	Article	IF	CITATIONS
109	Efficacy of VDT PACEâ€like regimens in treatment of relapsed/refractory multiple myeloma. American Journal of Hematology, 2018, 93, 179-186.	4.1	49
110	Safety Studies in Tumor and Non-Tumor-Bearing Mice in Support of Clinical Trials Using Oncolytic VSV-IFNβ-NIS. Human Gene Therapy Clinical Development, 2016, 27, 111-122.	3.1	47
111	Comparative Oncology Evaluation of Intravenous Recombinant Oncolytic Vesicular Stomatitis Virus Therapy in Spontaneous Canine Cancer. Molecular Cancer Therapeutics, 2018, 17, 316-326.	4.1	46
112	Incorporation of Fowl Plague Virus Hemagglutinin into Murine Leukemia Virus Particles and Analysis of the Infectivity of the Pseudotyped Retroviruses. Journal of Virology, 1998, 72, 5313-5317.	3.4	46
113	Retargeting Vesicular Stomatitis Virus Using Measles Virus Envelope Glycoproteins. Human Gene Therapy, 2012, 23, 484-491.	2.7	45
114	Induction therapy preâ€autologous stem cell transplantation in immunoglobulin light chain amyloidosis: a retrospective evaluation. American Journal of Hematology, 2016, 91, 984-988.	4.1	45
115	Modification of retroviral tropism by display of IGF-I 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 285, 485-494.	4.2	44
116	Infection and Killing of Multiple Myeloma by Adenoviruses. Human Gene Therapy, 2010, 21, 179-190.	2.7	44
117	Safety Studies on Intravenous Administration of Oncolytic Recombinant Vesicular Stomatitis Virus in Purpose-Bred Beagle Dogs. Human Gene Therapy Clinical Development, 2013, 24, 174-181.	3.1	44
118	Systemic Immunoglobulin Light Chain Amyloidosis–Associated Myopathy: Presentation, Diagnostic Pitfalls, and Outcome. Mayo Clinic Proceedings, 2016, 91, 1354-1361.	3.0	43
119	Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia, 2022, 36, 801-808.	7.2	43
120	Oncolytic Measles Virus Encoding Thyroidal Sodium Iodide Symporter for Squamous Cell Cancer of the Head and Neck Radiovirotherapy. Human Gene Therapy, 2012, 23, 295-301.	2.7	41
121	Betaâ€blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. American Journal of Hematology, 2017, 92, 50-55.	4.1	41
122	Impact of acquired del(17p) in multiple myeloma. Blood Advances, 2019, 3, 1930-1938.	5.2	41
123	Masking of Retroviral Envelope Functions by Oligomerizing Polypeptide Adaptors. Virology, 1997, 234, 51-61.	2.4	40
124	Tenâ€year survivors in AL amyloidosis: characteristics and treatment pattern. British Journal of Haematology, 2019, 187, 588-594.	2.5	40
125	Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter. Biochemical and Biophysical Research Communications, 2004, 325, 157-166.	2.1	39
126	Dexamethasone-Induced Oxidative Stress Enhances Myeloma Cell Radiosensitization While Sparing Normal Bone Marrow Hematopoiesis. Neoplasia, 2010, 12, 980-992.	5.3	39

#	Article	IF	CITATIONS
127	Oncolytic vaccines. Expert Review of Vaccines, 2013, 12, 1155-1172.	4.4	38
128	Outcomes of primary refractory multiple myeloma and the impact of novel therapies. American Journal of Hematology, 2015, 90, 981-985.	4.1	38
129	Natural history of multiple myeloma with de novo del(17p). Blood Cancer Journal, 2019, 9, 32.	6.2	38
130	Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma. Blood, 2006, 107, 4063-4070.	1.4	37
131	Stem cell transplantation compared with melphalan plus dexamethasone in the treatment of immunoglobulin lightâ€chain amyloidosis. Cancer, 2016, 122, 2197-2205.	4.1	37
132	Enhancing the Râ€ISS classification of newly diagnosed multiple myeloma by quantifying circulating clonal plasma cells. American Journal of Hematology, 2020, 95, 310-315.	4.1	37
133	Gene therapy for malignant glioma using Sindbis vectors expressing a fusogenic membrane glycoprotein. Journal of Gene Medicine, 2004, 6, 1082-1091.	2.8	36
134	Optimizing deep response assessment for AL amyloidosis using involved free light chain level at end of therapy: failure of the serum free light chain ratio. Leukemia, 2019, 33, 527-531.	7.2	36
135	Intravascularly Administered RGD-Displaying Measles Viruses Bind to and Infect Neovessel Endothelial Cells In Vivo. Molecular Therapy, 2009, 17, 1012-1021.	8.2	35
136	Vesiculovirus Neutralization by Natural IgM and Complement. Journal of Virology, 2014, 88, 6148-6157.	3.4	34
137	Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine. BMC Cancer, 2012, 12, 508.	2.6	33
138	Treatment of AL Amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement 2020 Update. Mayo Clinic Proceedings, 2021, 96, 1546-1577.	3.0	32
139	Soluble suppression of tumorigenicity 2 (s <scp>ST</scp> 2), but not galactinâ€3, adds to prognostication in patients with systemic <scp>AL</scp> amyloidosis independent of <scp>NT</scp> â€pro <scp>BNP</scp> and troponin <scp>T</scp> . American Journal of Hematology, 2015, 90, 524-528.	4.1	31
140	Characteristics of Oncolytic Vesicular Stomatitis Virus Displaying Tumor-Targeting Ligands. Journal of Virology, 2013, 87, 13543-13555.	3.4	30
141	Clinical characteristics and outcomes in biclonal gammopathies. American Journal of Hematology, 2016, 91, 473-475.	4.1	30
142	MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. Journal of Virology, 2016, 90, 4078-4092.	3.4	29
143	Overall survival of transplant eligible patients with newly diagnosed multiple myeloma: comparative effectiveness analysis of modern induction regimens on outcome. Blood Cancer Journal, 2018, 8, 125.	6.2	29
144	Monoclonal gammopathyâ€associated thrombotic microangiopathy. American Journal of Hematology, 2019, 94, E250-E253.	4.1	29

#	Article	IF	CITATIONS
145	Bone marrow plasma cells 20% or greater discriminate presentation, response, and survival in AL amyloidosis. Leukemia, 2020, 34, 1135-1143.	7.2	29
146	Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Reports Medicine, 2021, 2, 100225.	6.5	29
147	Mathematical Model for Radial Expansion and Conflation of Intratumoral Infectious Centers Predicts Curative Oncolytic Virotherapy Parameters. PLoS ONE, 2013, 8, e73759.	2.5	28
148	Prognostic significance of interphase FISH in monoclonal gammopathy of undetermined significance. Leukemia, 2018, 32, 1811-1815.	7.2	28
149	Synthesis of ¹⁸ F-Tetrafluoroborate via Radiofluorination of Boron Trifluoride and Evaluation in a Murine C6-Glioma Tumor Model. Journal of Nuclear Medicine, 2016, 57, 1454-1459.	5.0	27
150	Oncolytic vesicular stomatitis virus and bortezomib are antagonistic against myeloma cells inÂvitro but have additive anti-myeloma activity inÂvivo. Experimental Hematology, 2013, 41, 1038-1049.	0.4	26
151	Perfusion Pressure Is a Critical Determinant of the Intratumoral Extravasation of Oncolytic Viruses. Molecular Therapy, 2016, 24, 306-317.	8.2	26
152	Faster Replication and Higher Expression Levels of Viral Glycoproteins Give the Vesicular Stomatitis Virus/Measles Virus Hybrid VSV-FH a Growth Advantage over Measles Virus. Journal of Virology, 2014, 88, 8332-8339.	3.4	25
153	The impact of dialysis on the survival of patients with immunoglobulin light chain (AL) amyloidosis undergoing autologous stem cell transplantation. Nephrology Dialysis Transplantation, 2016, 31, 1284-1289.	0.7	25
154	Efficacy of daratumumabâ€based therapies in patients with relapsed, refractory multiple myeloma treated outside of clinical trials. American Journal of Hematology, 2017, 92, 1146-1155.	4.1	25
155	Safety, pharmacokinetics, metabolism and radiation dosimetry of 18F-tetrafluoroborate (18F-TFB) in healthy human subjects. EJNMMI Research, 2017, 7, 90.	2.5	25
156	Survival impact of achieving minimal residual negativity by multi-parametric flow cytometry in AL amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2020, 27, 13-16.	3.0	25
157	How to develop viruses into anticancer weapons. PLoS Pathogens, 2017, 13, e1006190.	4.7	25
158	Oncolytic measles and vesicular stomatitis virotherapy for endometrial cancer. Gynecologic Oncology, 2014, 132, 194-202.	1.4	24
159	Treatment patterns and outcome following initial relapse or refractory disease in patients with systemic light chain amyloidosis. American Journal of Hematology, 2017, 92, 549-554.	4.1	24
160	Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. Molecular Therapy - Oncolytics, 2020, 16, 63-74.	4.4	24
161	Reporter gene imaging identifies intratumoral infection voids as a critical barrier to systemic oncolytic virus efficacy. Molecular Therapy - Oncolytics, 2014, 1, 14005.	4.4	23
162	The utility of cells as vehicles for oncolytic virus therapies. Current Opinion in Molecular Therapeutics, 2008, 10, 380-6.	2.8	23

#	Article	IF	CITATIONS
163	Comparative analysis of staging systems in AL amyloidosis. Leukemia, 2019, 33, 811-814.	7.2	22
164	Enhancing cytokine-induced killer cell therapy of multiple myeloma. Experimental Hematology, 2013, 41, 508-517.	0.4	21
165	Recombinant mumps virus as a cancer therapeutic agent. Molecular Therapy - Oncolytics, 2016, 3, 16019.	4.4	21
166	Genetically engineered attenuated measles virus specifically infects and kills primary multiple myeloma cells. Journal of General Virology, 2009, 90, 693-701.	2.9	20
167	Antigenic Drift Defines a New D4 Subgenotype of Measles Virus. Journal of Virology, 2017, 91, .	3.4	20
168	Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies. PLoS ONE, 2013, 8, e52306.	2.5	20
169	Epitope selection from an uncensored peptide library displayed on avian leukosis virus. Virology, 2003, 315, 313-321.	2.4	19
170	Myeloma Xenograft Destruction by a Nonviral Vector Delivering Oncolytic Infectious Nucleic Acid. Molecular Therapy, 2011, 19, 1041-1047.	8.2	19
171	A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Molecular Therapy - Oncolytics, 2021, 21, 98-109.	4.4	19
172	Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression. Molecular Therapy, 2015, 23, 1211-1221.	8.2	18
173	Synthesis and evaluation of 18 F-hexafluorophosphate as a novel PET probe for imaging of sodium/iodide symporter in a murine C6-glioma tumor model. Bioorganic and Medicinal Chemistry, 2018, 26, 225-231.	3.0	18
174	Peripheral blood biomarkers of early immune reconstitution in newly diagnosed multiple myeloma. American Journal of Hematology, 2019, 94, 306-311.	4.1	18
175	Long-term outcomes of IMiD-based trials in patients with immunoglobulin light-chain amyloidosis: a pooled analysis. Blood Cancer Journal, 2020, 10, 4.	6.2	18
176	Converting Tumor-specific Markers Into Reporters of Oncolytic Virus Infection. Molecular Therapy, 2009, 17, 1395-1403.	8.2	17
177	Antibody neutralization of retargeted measles viruses. Virology, 2014, 454-455, 237-246.	2.4	17
178	Enhanced noninvasive imaging of oncology models using the NIS reporter gene and bioluminescence imaging. Cancer Gene Therapy, 2020, 27, 179-188.	4.6	17
179	Refining amyloid complete hematological response: Quantitative serum free light chains superior to ratio. American Journal of Hematology, 2020, 95, 1280-1287.	4.1	17
180	Oncolytic Measles Virus Retargeting by Ligand Display. Methods in Molecular Biology, 2012, 797, 141-162.	0.9	17

#	Article	IF	CITATIONS
181	Hematology patient reported symptom screen to assess quality of life for AL amyloidosis. American Journal of Hematology, 2017, 92, 435-440.	4.1	16
182	Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses, 2019, 11, 688.	3.3	16
183	Clinical Characteristics and Outcomes of Patients With Primary Plasma Cell Leukemia in the Era of Novel Agent Therapy. Mayo Clinic Proceedings, 2021, 96, 677-687.	3.0	16
184	Combination Therapy with CC-5013 (Lenalidomide; Revlimidâ,,¢) Plus Dexamethasone (Rev/Dex) for Newly Diagnosed Myeloma (MM) Blood, 2004, 104, 331-331.	1.4	16
185	Pomalidomide Plus Low-Dose Dexamethasone (Pom/Dex) in Relapsed Myeloma: Long Term Follow up and Factors Predicing Outcome in 345 Patients. Blood, 2012, 120, 201-201.	1.4	16
186	Phase 1b/2a Open-Label, Multiple-Dose, Dose-Escalation Study to Evaluate the Safety and Tolerability of SNS01-T Administered by Intravenous Infusion in Patients with Relapsed or Refractory Multiple Myeloma Blood, 2012, 120, 2973-2973.	1.4	16
187	Amalgamating Oncolytic Viruses to Enhance Their Safety, Consolidate Their Killing Mechanisms, and Accelerate Their Spread. Molecular Therapy, 2013, 21, 1930-1937.	8.2	15
188	Robust Oncolytic Virotherapy Induces Tumor Lysis Syndrome and Associated Toxicities in the MPC-11 Plasmacytoma Model. Molecular Therapy, 2016, 24, 2109-2117.	8.2	15
189	Elevation of serum lactate dehydrogenase in <scp>AL</scp> amyloidosis reflects tissue damage and is an adverse prognostic marker in patients not eligible for stem cell transplantation. British Journal of Haematology, 2017, 178, 888-895.	2.5	15
190	Prognostic value of minimal residual disease and polyclonal plasma cells in myeloma patients achieving a complete response to therapy. American Journal of Hematology, 2019, 94, 751-756.	4.1	15
191	Retargeted and Stealth-Modified Oncolytic Measles Viruses for Systemic Cancer Therapy in Measles Immune Patients. Molecular Cancer Therapeutics, 2020, 19, 2057-2067.	4.1	15
192	Avian leukosis virus is a versatile eukaryotic platform for polypeptide display. Virology, 2003, 315, 303-312.	2.4	14
193	Primer on Medical Genomics Part X: Gene Therapy. Mayo Clinic Proceedings, 2003, 78, 1370-1383.	3.0	14
194	Oncolytic vaccinia virotherapy for endometrial cancer. Gynecologic Oncology, 2014, 132, 722-729.	1.4	14
195	Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunology Research, 2021, 9, 1035-1046.	3.4	14
196	Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine, 2022, 40, 2342-2351.	3.8	14
197	Inter-species variation in monovalent anion substrate selectivity and inhibitor sensitivity in the sodium iodide symporter (NIS). PLoS ONE, 2020, 15, e0229085.	2.5	13
198	MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathogens, 2021, 17, e1009283.	4.7	13

#	Article	IF	CITATIONS
199	Monitoring the initial delivery of an oncolytic measles virus encoding the human sodium iodide symporter to solid tumors using contrastâ€enhanced computed tomography. Journal of Gene Medicine, 2012, 14, 590-597.	2.8	12
200	Substratification of patients with newly diagnosed standardâ€risk multiple myeloma. British Journal of Haematology, 2019, 185, 254-260.	2.5	12
201	Impact of prior diagnosis of monoclonal gammopathy on outcomes in newly diagnosed multiple myeloma. Leukemia, 2019, 33, 1273-1277.	7.2	12
202	Utilizing multiparametric flow cytometry in the diagnosis of patients with primary plasma cell leukemia. American Journal of Hematology, 2020, 95, 637-642.	4.1	12
203	Intravascular cell delivery device for therapeutic VEGF-induced angiogenesis in chronic vascular occlusion. Biomaterials, 2014, 35, 9012-9022.	11.4	11
204	Impact of involved free light chain (FLC) levels in patients achieving normal FLC ratio after initial therapy in light chain amyloidosis (AL). American Journal of Hematology, 2018, 93, 17-22.	4.1	11
205	Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses. PLoS ONE, 2018, 13, e0192245.	2.5	11
206	Oncolytic Activity of Targeted Picornaviruses Formulated as Synthetic Infectious RNA. Molecular Therapy - Oncolytics, 2020, 17, 484-495.	4.4	11
207	Clinical Activity of Single Dose Systemic Oncolytic VSV Virotherapy in Patients with Relapsed Refractory T-Cell Lymphoma. Blood Advances, 2022, , .	5.2	11
208	Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors. Cancer Gene Therapy, 2000, 7, 526-529.	4.6	10
209	Gene therapy approaches for multiple myeloma. Seminars in Hematology, 2001, 38, 268-275.	3.4	10
210	Concordant activity of transgene expression cassettes inserted into E1, E3 and E4 cloning sites in the adenovirus genome. Journal of Gene Medicine, 2009, 11, 197-206.	2.8	10
211	Oncolytic potency of HER-2 retargeted VSV-FH hybrid viruses: the role of receptor ligand affinity. Molecular Therapy - Oncolytics, 2015, 2, 15012.	4.4	10
212	Natural history of amyloidosis isolated to fat and bone marrow aspirate. British Journal of Haematology, 2017, 179, 170-172.	2.5	10
213	Immunoparesis status in immunoglobulin light chain amyloidosis at diagnosis affects response and survival by regimen type. Haematologica, 2016, 101, 1102-1109.	3.5	9
214	Depth of organ response in AL amyloidosis is associated with improved survival: new proposed organ response criteria. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 101-102.	3.0	9
215	Oncolytic Measles Virotherapy and Opposition to Measles Vaccination. Mayo Clinic Proceedings, 2019, 94, 1834-1839.	3.0	9
216	The Impact of Socioeconomic Risk Factors on the Survival Outcomes of Patients With Newly Diagnosed Multiple Myeloma: A Cross-analysis of a Population-based Registry and a Tertiary Care Center. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 451-460.e2.	0.4	9

Stephen J Russell

#	Article	IF	CITATIONS
217	Oncolytic Virus with Attributes of Vesicular Stomatitis Virus and Measles Virus in Hepatobiliary and Pancreatic Cancers. Molecular Therapy - Oncolytics, 2020, 18, 546-555.	4.4	9
218	Prognostic significance of circulating plasma cells by multi-parametric flow cytometry in light chain amyloidosis. Leukemia, 2018, 32, 1421-1426.	7.2	8
219	Cytogenetic Features and Clinical Outcomes of Patients With Non-secretory Multiple Myeloma in the Era of Novel Agent Induction Therapy. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 53-56.	0.4	8
220	Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). Journal of Chemical Information and Modeling, 2020, 60, 1652-1665.	5.4	8
221	Comparison of the current renal staging, progression and response criteria to predict renal survival in <scp>AL</scp> amyloidosis using a <scp>Mayo</scp> cohort. American Journal of Hematology, 2021, 96, 446-454.	4.1	8
222	Enhancing the therapeutic index of radiation in multiple myeloma. Drug Discovery Today Disease Mechanisms, 2006, 3, 515-522.	0.8	7
223	Preclinical Development of Oncolytic Immunovirotherapy for Treatment of HPVPOS Cancers. Molecular Therapy - Oncolytics, 2018, 10, 1-13.	4.4	7
224	Dual-Isotope SPECT Imaging with NIS Reporter Gene and Duramycin to Visualize Tumor Susceptibility to Oncolytic Virus Infection. Molecular Therapy - Oncolytics, 2019, 15, 178-185.	4.4	7
225	Prognostic restaging at the time of second-line therapy in patients with AL amyloidosis. Leukemia, 2019, 33, 1268-1272.	7.2	7
226	Oncolytic Foamy Virus: Generation and Properties of a Nonpathogenic Replicating Retroviral Vector System That Targets Chronically Proliferating Cancer Cells. Journal of Virology, 2021, 95, .	3.4	7
227	Continued Improvement in Survival in Multiple Myeloma and the Impact of Novel Agents. Blood, 2012, 120, 3972-3972.	1.4	7
228	Cap-dependent translational control of oncolytic measles virus infection in malignant mesothelioma. Oncotarget, 2017, 8, 63096-63109.	1.8	7
229	For the Success of Oncolytic Viruses: Single Cycle Cures or Repeat Treatments? (One Cycle Should Be) Tj ETQq1	1 0.7843 8.2	14 rgBT /Over
230	The prognostic significance of polyclonal bone marrow plasma cells in patients with relapsing multiple myeloma. American Journal of Hematology, 2017, 92, E507-E512.	4.1	5
231	Outcomes with early vs. deferred stem cell transplantation in light chain amyloidosis. Bone Marrow Transplantation, 2020, 55, 1297-1304.	2.4	5
232	The long-lasting enigma of polycytidine (polyC) tract. PLoS Pathogens, 2021, 17, e1009739.	4.7	5
233	Combination Therapy with Lenalidomide Plus Dexamethasone (Rev/Dex) for Newly Diagnosed Myeloma Blood, 2005, 106, 781-781.	1.4	5
234	Genetic Targeting of Retroviral Vectors. , 2003, , 267-291.		4

Genetic Targeting of Retroviral Vectors. , 2003, , 267-291. 234

#	Article	IF	CITATIONS
235	MicroRNA-based Regulation of Picornavirus Tropism. Journal of Visualized Experiments, 2017, , .	0.3	4
236	Predictors of early treatment failure following initial therapy for systemic immunoglobulin light-chain amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 183-188.	3.0	4
237	Impact of prior melphalan exposure on stem cell collection in light chain amyloidosis. Bone Marrow Transplantation, 2018, 53, 326-333.	2.4	4
238	Implications and outcomes of MRDâ€negative multiple myeloma patients with immunofixation positivity. American Journal of Hematology, 2020, 95, E60-E62.	4.1	4
239	Improved Noninvasive InÂVivo Tracking of AAV-9 Gene Therapy Using the Perchlorate-Resistant Sodium Iodide Symporter from Minke Whale. Molecular Therapy, 2021, 29, 236-243.	8.2	4
240	Characterization and prognostic implication of delayed complete response in AL amyloidosis. European Journal of Haematology, 2021, 106, 354-361.	2.2	4
241	Continued Improvement in Survival of Patients with Newly Diagnosed Multiple Myeloma (MM). Blood, 2020, 136, 30-31.	1.4	4
242	Pomalidomide and Dexamethasone in Relapsed Myeloma: Results of 225 Patients Treated in Five Cohorts Over Three Years,. Blood, 2011, 118, 3963-3963.	1.4	4
243	Oncolytic virotherapy – Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treatment and Research Communications, 2021, 29, 100473.	1.7	4
244	A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells. Stem Cells, 2016, 34, 1354-1368.	3.2	3
245	Serum free light chain measurements to reduce 24â€h urine monitoring in patients with multiple myeloma with measurable urine monoclonal protein. American Journal of Hematology, 2018, 93, 1207-1210.	4.1	3
246	Utility of repeating bone marrow biopsy for confirmation of complete response in multiple myeloma. Blood Cancer Journal, 2020, 10, 95.	6.2	3
247	GM-CSF Blockade during Chimeric Antigen Receptor T Cell Therapy Reduces Cytokine Release Syndrome and Neurotoxicity and May Enhance Their Effector Functions. Blood, 2018, 132, 961-961.	1.4	3
248	Survival Outcomes Of Very Young (<40 years) Myeloma Patients. Blood, 2013, 122, 2136-2136.	1.4	3
249	Myelomatous Involvement Of The Central Nervous System: Mayo Clinic Experience. Blood, 2013, 122, 3119-3119.	1.4	3
250	Impact of Bone Marrow Plasmacytosis on Outcome in Patients with AL Amyloidosis Following Autologous Stem Cell Transplant. Blood, 2015, 126, 3177-3177.	1.4	3
251	Thrombotic Microangiopathy in Multiple Myeloma. Blood, 2015, 126, 5317-5317.	1.4	3
252	Bortezomib Versus Non-Bortezomib Based Treatment for Transplant Ineligible Patients with Light Chain Amyloidosis. Blood, 2016, 128, 3317-3317.	1.4	3

#	Article	IF	CITATIONS
253	Evaluation of the stability and intratumoral delivery of foreign transgenes encoded by an oncolytic Foamy Virus vector. Cancer Gene Therapy, 2022, 29, 1240-1251.	4.6	3
254	New transgenic NIS reporter rats for longitudinal tracking of fibrogenesis by high-resolution imaging. Scientific Reports, 2018, 8, 14209.	3.3	2
255	Collateral Lethal Effects of Complementary Oncolytic Viruses. Molecular Therapy - Oncolytics, 2020, 18, 236-246.	4.4	2
256	MicroRNA-detargeting proves more effective than leader gene deletion for improving safety of oncolytic Mengovirus in a nude mouse model. Molecular Therapy - Oncolytics, 2021, 23, 1-13.	4.4	2
257	Phase 2 Trial of LDE225 and Lenalidomide Maintenance Post Autologous Stem Cell Transplant for Multiple Myeloma. Blood, 2019, 134, 1905-1905.	1.4	2
258	Tumor Associated Macrophages (TAM) in Skeletal Plasmacytomas of Patients with Multiple Myeloma Blood, 2007, 110, 114-114.	1.4	2
259	Long Term Outcomes of Pomalidomide and Dexamethasone in Patients with Relapsed Multiple Myeloma: Analysis 4 Years After the Original Cohort. Blood, 2011, 118, 2942-2942.	1.4	2
260	Outcomes and Treatments of Relapsed AL Amyloidosis Following Stem Cell Transplant. Blood, 2012, 120, 1858-1858.	1.4	2
261	Therapy Related MDS/AML In Multiple Myeloma Patients In The Era Of Novel Agents. Blood, 2013, 122, 3117-3117.	1.4	2
262	Utilizing Multiparametric Flow Cytometry to Identify Patients with Primary Plasma Cell Leukemia at Diagnosis. Blood, 2019, 134, 4334-4334.	1.4	1
263	Phase I Trial of Systemic Administration of Vesicular Stomatitis Virus Genetically Engineered to Express NIS and Human Interferon Beta, in Patients with Relapsed or Refractory Multiple Myeloma (MM), Acute Myeloid Leukemia (AML), and T-Cell Neoplasms (TCL). Blood, 2020, 136, 7-8.	1.4	1
264	In-111DAC Is a Novel Technique To Image Multiple Myeloma Blood, 2006, 108, 3488-3488.	1.4	1
265	14q32 Abnormalities and 13q Deletions Are Common in Primary Systemic Amyloidosis Using Cytoplasmic Immunoglobulin Fluorescence In Situ Hybridization (clg-FISH) Blood, 2007, 110, 2477-2477.	1.4	1
266	The Utility of High Sensitivity Cardiac Troponin Among Patients with Immunoglobulin Light Chain Amyloidosis. Blood, 2011, 118, 2887-2887.	1.4	1
267	Survival After Second, Third, and Fourth Line Therapy Better Than Expected in Patients with Previously Treated AL Amyloidosis Who Were Not Transplant Candidates At Diagnosis Blood, 2012, 120, 946-946.	1.4	1
268	Soluble ST2 (sST2) Is a Novel Valuable Prognostic Marker Among Patients With Immunoglobulin Light Chain (AL) Amyloidosis. Blood, 2013, 122, 3095-3095.	1.4	1
269	Predictors of Early Relapse Following Initial Therapy for Systemic Immunoglobulin Light Chain Amyloidosis. Blood, 2016, 128, 2082-2082.	1.4	1
270	Clinical Presentation and Outcomes of Patients with Light Chain Amyloidosis Who Have Non-Evaluable Free Light Chains at Diagnosis. Blood, 2016, 128, 3272-3272.	1.4	1

#	Article	IF	CITATIONS
271	Practice Patterns of Re-Initiation of Therapy at Time of Relapse or Progression Post- Autologous Stem Cell Transplant (ASCT) Among Patients with AL Amyloidosis. Blood, 2016, 128, 3444-3444.	1.4	1
272	Effect of Standard Dose Versus Risk Adapted Melphalan Conditioning on Outcomes in Systemic AL Amyloidosis Patients Undergoing Frontline Autologous Stem Cell Transplant Based on Revised Mayo Stage. Blood, 2016, 128, 4627-4627.	1.4	1
273	Serotypic Evolution of Measles Is Constrained by Multiple Codominant B-Cell Epitopes on Its Surface Glycoproteins. SSRN Electronic Journal, 0, , .	0.4	1
274	Concomitant Myeloproliferative Disorders (MPD) and Amyloidosis. Blood, 2016, 128, 5480-5480.	1.4	1
275	Clinical Outcomes and Cytogenetic Features of Primary Plasma Cell Leukemia (pPCL) in the Era of Novel Agent Induction Therapy. Blood, 2019, 134, 5490-5490.	1.4	1
276	Vesicular Stomatitis Virus (VSV) Engineered to Express CD19 Stimulates Anti-CD19 Chimeric Antigen Receptor Modified T Cells and Promotes Their Anti-Tumor Effects. Blood, 2020, 136, 30-31.	1.4	1
277	Heterogeneous delivery is a barrier to the translational advancement of oncolytic virotherapy for treating solid tumors. Virus Adaptation and Treatment, 2014, , 11.	1.5	Ο
278	Correction for Tesfay et al., Vesiculovirus Neutralization by Natural IgM and Complement. Journal of Virology, 2015, 89, 1945-1946.	3.4	0
279	Fully Retargeted Oncolytic Measles Virus for Multiple Myeloma Therapy Blood, 2006, 108, 5474-5474.	1.4	0
280	Pre-Clinical Data and Preliminary Patient Results of Intravenous MV-NIS To Treat Relapsed, Refractory Multiple Myeloma Blood, 2007, 110, 1181-1181.	1.4	0
281	Melphalan and Dexamethasone Is an Effective Therapy for Primary Systemic Amyloidosis Blood, 2007, 110, 3608-3608.	1.4	0
282	Outcomes of Patients with POEMS Syndrome Treated Initially with Radiation. Blood, 2012, 120, 448-448.	1.4	0
283	Importance of Achieving Sustained Stringent Complete Response (sCR) Following Autologous Stem Cell Transplantation in Multiple Myeloma. Blood, 2012, 120, 1988-1988.	1.4	0
284	Biological Therapy for Multiple Myeloma. , 2014, , 141-158.		0
285	Effect Of Immediate Prior-Line Lenalidomide Or Thalidomide Therapy On Response To Pomalidomide In Multiple Myeloma. Blood, 2013, 122, 1979-1979.	1.4	0
286	Long Term Response To Lenalidomide With and Without Continuous Therapy Among Patients With Newly Diagnosed Multiple Myeloma. Blood, 2013, 122, 3209-3209.	1.4	0
287	Occurrence and Prognostic Significance of Cytogenetic Evolution in Patients with Multiple Myeloma. Blood, 2015, 126, 4176-4176.	1.4	0
288	Natural History of Amyloidosis Isolated to Fat and Bone Marrow Aspirate. Blood, 2015, 126, 5303-5303.	1.4	0

#	Article	IF	CITATIONS
289	Prognostic Implications of Multiple Cytogenetic High-Risk Abnormalities in Patients with Newly Diagnosed Multiple Myeloma. Blood, 2016, 128, 5615-5615.	1.4	0
290	Thyroid Functional Abnormalities in Newly Diagnosed AL Amyloidosis: Frequency and Influence By Type of Organ Involvement and Disease Burden. Blood, 2016, 128, 3273-3273.	1.4	0
291	Changes in Uninvolved Immunoglobulins during Multiple Myeloma Therapy. Blood, 2016, 128, 3251-3251.	1.4	Ο
292	Beta-Blockers Improved Survival Outcomes in Patients with Multiple Myeloma: A Retrospective Evaluation. Blood, 2016, 128, 3306-3306.	1.4	0
293	The Prognostic Significance of Polyclonal Bone Marrow Plasma Cells in Patients with Actively Relapsing Multiple Myeloma. Blood, 2016, 128, 1194-1194.	1.4	0
294	Fluorescence in-Situ Hybridization (FISH) Analysis in Untreated AL Amyloidosis Has an Independent Prognostic Impact By Abnormality Type and Treatment Category. Blood, 2016, 128, 3269-3269.	1.4	0
295	Treatment Patterns and Outcomes Following Initial Relapse in Patients with Relapsed Systemic Immunoglobulin Light Chain Amyloidosis. Blood, 2016, 128, 3338-3338.	1.4	0
296	Predicting Poor Overall Survival in Patients with Newly Diagnosed Multiple Myeloma and Standard-Risk Cytogenetics Treated with Novel Agents. Blood, 2016, 128, 3255-3255.	1.4	0
297	Impact of Melphalan-Based Chemotherapy on Stem Cell Collection in Patients with Light Chain Amyloidosis. Blood, 2016, 128, 2187-2187.	1.4	0
298	Comparative Analysis of Staging Systems in AL Amyloidosis. Blood, 2018, 132, 3228-3228.	1.4	0
299	Early Prediction of Treatment Response in Newly Diagnosed Multiple Myeloma. Blood, 2018, 132, 3159-3159.	1.4	0
300	Prognostic Significance of Early Immune Reconstitution in Newly Diagnosed Multiple Myeloma. Blood, 2018, 132, 3158-3158.	1.4	0
301	Impact of Acquired Del(17p) in Patients with Multiple Myeloma. Blood, 2018, 132, 4449-4449.	1.4	0
302	Long-Term AL Amyloidosis Survivors Among Non-Selected Referral Population. Blood, 2018, 132, 3226-3226.	1.4	0
303	Expected Survival in Patients with Smoldering Multiple Myeloma and Multiple Myeloma. Blood, 2018, 132, 4497-4497.	1.4	0
304	Mass Spectrometry to Measure Response in Immunoglobulin Light Chain Amyloidosis (AL). Blood, 2018, 132, 4502-4502.	1.4	0
305	Prognostic Restaging at the Time of 2nd-Line Therapy in Patients with AL Amyloidosis. Blood, 2018, 132, 5594-5594.	1.4	0
306	Optimizing Deep Response Assessment for AL Amyloidosis Using Involved Free Light Chain Level at End of Therapy. Blood, 2018, 132, 3227-3227.	1.4	0

#	Article	IF	CITATIONS
307	Phase I Trial of Systemic Administration of Vesicular Stomatitis Virus Genetically Engineered to Express NIS and Human Interferon, in Patients with Relapsed or Refractory Multiple Myeloma (MM), Acute Myeloid Leukemia (AML), and T-Cell Neoplasms (TCL). Blood, 2018, 132, 3268-3268.	1.4	0
308	Characterization of Exceptional Responders to Autologous Stem Cell Transplantation in Multiple Myeloma. Blood, 2018, 132, 4615-4615.	1.4	0
309	Hypovitaminosis D Is Prevalent in Patients with Renal AL Amyloidosis and Associated with Non-t(11;14). Blood, 2019, 134, 5523-5523.	1.4	0
310	Determinants of Clinical Trial Participation and Impact on Survival Outcomes Among Patients with Newly Diagnosed Multiple Myeloma. Blood, 2019, 134, 5833-5833.	1.4	0
311	Phase 2 Trial of Ixazomib, Cyclophosphamide and Dexamethasone in Relapsed Multiple Myeloma. Blood, 2019, 134, 1904-1904.	1.4	0
312	The Impact of Socioeconomic Risk Factors on the Survival Outcomes of Patients with Newly Diagnosed Multiple Myeloma. Blood, 2019, 134, 2197-2197.	1.4	0
313	Long-term Outcomes of Sequential Hematopoietic Stem Cell Transplantation and Kidney Transplantation: Single-center Experience. Transplantation, 2021, 105, 1615-1624.	1.0	Ο
314	An Analysis of Virus Amplification and Antitumor Responses in T-Cell Lymphoma Patients Treated with Voyager-V1 (VSV-IFNÎ ² -NIS). Blood, 2021, 138, 1333-1333.	1.4	0
315	Prognostic Role of IL-6 in POEMS Syndrome. Blood, 2021, 138, 2700-2700.	1.4	Ο
316	Mortality Trends in Multiple Myeloma after the Introduction of Novel Therapies in the United States. Blood, 2021, 138, 119-119.	1.4	0
317	The Impact of the Central Carbon Energy Metabolism Transcriptome in the Pathogenesis and Outcomes of Multiple Myeloma. Blood, 2021, 138, 2650-2650.	1.4	0
318	Title is missing!. , 2020, 15, e0229085.		0
319	Title is missing!. , 2020, 15, e0229085.		Ο
320	Title is missing!. , 2020, 15, e0229085.		0
321	Title is missing!. , 2020, 15, e0229085.		0