List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776867/publications.pdf Version: 2024-02-01

	25014	24961
12,816	57	109
citations	h-index	g-index
232	232	11925
docs citations	times ranked	citing authors
	12,816 citations 232 docs citations	12,81657citationsh-index232232docs citations1100000000000000000000000000000000000

LUISA TODSI

#	Article	IF	CITATIONS
1	Enzyme based amperometric wide field biosensors: Is singleâ€molecule detection possible?. Electrochemical Science Advances, 2023, 3, .	1.2	4
2	Enzyme based field effect transistor: Stateâ€ofâ€theâ€art and future perspectives. Electrochemical Science Advances, 2023, 3, .	1.2	5
3	Green Materials and Technologies for Sustainable Organic Transistors. Advanced Materials Technologies, 2022, 7, 2100445.	3.0	31
4	Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chemical Reviews, 2022, 122, 4636-4699.	23.0	43
5	Electrochemical and X-ray Photoelectron Spectroscopy Surface Characterization of Interchain-Driven Self-Assembled Monolayer (SAM) Reorganization. Nanomaterials, 2022, 12, 867.	1.9	3
6	In Situ Coupled Electrochemicalâ€Goniometry as a Tool to Reveal Conformational Changes of Charged Peptides. Advanced Materials Interfaces, 2022, 9, .	1.9	6
7	A large-area organic transistor with 3D-printed sensing gate for noninvasive single-molecule detection of pancreatic mucinous cyst markers. Analytical and Bioanalytical Chemistry, 2022, 414, 5657-5669.	1.9	11
8	Why a Diffusing Singleâ€Molecule can be Detected in Few Minutes by a Large Capturing Bioelectronic Interface. Advanced Science, 2022, 9, e2104381.	5.6	16
9	Physical Modelling of Large-Area Single-Molecule Organic Transistors. , 2022, , .		Ο
10	Large-area bio-electronic sensors for early detection of pancreatic-biliary cancer protein markers. , 2022, , .		0
11	Electrochemical Investigation of Self-Assembling Monolayers toward Ultrasensitive Sensing. , 2022, , .		Ο
12	Organic biosensors and bioelectronics. , 2021, , 501-530.		2
13	Negatively charged ions to probe self-assembled monolayer reorganization driven by interchain interactions. Journal of Materials Chemistry C, 2021, 9, 10935-10943.	2.7	5
14	The 2021 flexible and printed electronics roadmap. Flexible and Printed Electronics, 2021, 6, 023001.	1.5	100
15	Singleâ€Molecule Bioelectronic Labelâ€Free Assay of both Protein and Genomic Markers of Pancreatic Mucinous Cysts' in Whole Blood Serum. Advanced Electronic Materials, 2021, 7, 2100304.	2.6	23
16	Surface Plasmon Resonance Assay for Label-Free and Selective Detection of HIV-1 p24 Protein. Biosensors, 2021, 11, 180.	2.3	15
17	Surface Plasmon Resonance Assay for Labelâ€Free and Selective Detection of Xylella Fastidiosa. Advanced NanoBiomed Research, 2021, 1, 2100043.	1.7	7
18	Surface composition of mixed self-assembled monolayers on Au by infrared attenuated total reflection spectroscopy. Applied Surface Science, 2021, 559, 149883.	3.1	7

#	Article	IF	CITATIONS
19	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	11.8	172
20	Surface Plasmon Resonance Assay for Labelâ€Free and Selective Detection of <i>Xylella Fastidiosa</i> . Advanced NanoBiomed Research, 2021, 1, 2170103.	1.7	2
21	Silicon nanowire luminescent sensor for cardiovascular risk in saliva. Journal of Materials Science: Materials in Electronics, 2020, 31, 10-17.	1.1	34
22	Ultimately Sensitive Organic Bioelectronic Transistor Sensors by Materials and Device Structure Design. Advanced Functional Materials, 2020, 30, 1904513.	7.8	97
23	Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. Analytical and Bioanalytical Chemistry, 2020, 412, 811-818.	1.9	42
24	Electrochemical Preparation of Synergistic Nanoantimicrobials. Molecules, 2020, 25, 49.	1.7	17
25	Electronic biosensors based on EGOFETs. Methods in Enzymology, 2020, 642, 403-433.	0.4	6
26	Assessment of Gold Bio-Functionalization for Wide-Interface Biosensing Platforms. Sensors, 2020, 20, 3678.	2.1	12
27	Printed, cost-effective and stable poly(3-hexylthiophene) electrolyte-gated field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15312-15321.	2.7	33
28	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	1.6	2
29	Organic Field-Effect Transistor Platform for Label-Free, Single-Molecule Detection of Genomic Biomarkers. ACS Sensors, 2020, 5, 1822-1830.	4.0	59
30	New trends in single-molecule bioanalytical detection. Analytical and Bioanalytical Chemistry, 2020, 412, 5005-5014.	1.9	33
31	ZnO Nanostructures with Antibacterial Properties Prepared by a Green Electrochemical-Thermal Approach. Nanomaterials, 2020, 10, 473.	1.9	13
32	Enhancing the Sensitivity of Biotinylated Surfaces by Tailoring the Design of the Mixed Self-Assembled Monolayer Synthesis. ACS Omega, 2020, 5, 16762-16771.	1.6	22
33	Standalone operation of an EGOFET for ultra-sensitive detection of HIV. Biosensors and Bioelectronics, 2020, 156, 112103.	5.3	57
34	About the amplification factors in organic bioelectronic sensors. Materials Horizons, 2020, 7, 999-1013.	6.4	86
35	Let Us Together Shine a Light on Women in STEM. ACS Omega, 2020, 5, 7051-7052.	1.6	1
36	Investigation and Modelling of Single-Molecule Organic Transistors. , 2019, , .		0

#	Article	IF	CITATIONS
37	Analysis of Label-Free Single-Molecule Biosensors based on Gate-Biofunctionalized Organic Transistors. , 2019, , .		Ο
38	A label-free immunosensor based on a graphene water-gated field-effect transistor. , 2019, , .		3
39	A Study on the Stability of Water-Gated Organic Field-Effect-Transistors Based on a Commercial p-Type Polymer. Frontiers in Chemistry, 2019, 7, 667.	1.8	29
40	Selective single-molecule analytical detection of C-reactive protein in saliva with an organic transistor. Analytical and Bioanalytical Chemistry, 2019, 411, 4899-4908.	1.9	66
41	Effect of the ionic-strength of the gating-solution on a bioelectronic response. , 2019, , .		1
42	Label-Free and Selective Single-Molecule Bioelectronic Sensing with a Millimeter-Wide Self-Assembled Monolayer of Anti-Immunoglobulins. Chemistry of Materials, 2019, 31, 6476-6483.	3.2	62
43	Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosensors and Bioelectronics, 2018, 104, 113-119.	5.3	96
44	Improved Performance p-type Polymer (P3HT) / n-type Nanotubes (WS2) Electrolyte Gated Thin-Film Transistor. MRS Advances, 2018, 3, 1525-1533.	0.5	3
45	New Generation of Ultrasensitive Label-Free Optical Si Nanowire-Based Biosensors. ACS Photonics, 2018, 5, 471-479.	3.2	43
46	Label-free optical biosensing at femtomolar detection limit. Sensors and Actuators B: Chemical, 2018, 255, 1097-1104.	4.0	19
47	Deposition of nanomaterials: A crucial step in biosensor fabrication. Materials Today Communications, 2018, 17, 289-321.	0.9	140
48	Enhanced stability of organic field-effect transistor biosensors bearing electrosynthesized ZnO nanoparticles. Sensors and Actuators B: Chemical, 2018, 274, 210-217.	4.0	23
49	Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrates. Flexible and Printed Electronics, 2018, 3, 034002.	1.5	101
50	Single-molecule detection with a millimetre-sized transistor. Nature Communications, 2018, 9, 3223.	5.8	184
51	Surface analytical characterization of Streptavidin/poly(3–hexylthiophene) bilayers for bio-electronic applications. Applied Surface Science, 2017, 420, 313-322.	3.1	10
52	Characterization of Covalently Bound Antiâ€Human Immunoglobulins on Selfâ€Assembled Monolayer Modified Gold Electrodes. Advanced Biology, 2017, 1, e1700055.	3.0	51
53	The double layer capacitance of ionic liquids for electrolyte gating of ZnO thin film transistors and effect of gate electrodes. Journal of Materials Chemistry C, 2017, 5, 3509-3518.	2.7	66
54	Organic electrochemical transistor immuno-sensor operating at the femto-molar limit of detection. ,		7

4 2017,,.

#	Article	IF	CITATIONS
55	Characterization of modified working electrodes for sensing applications by means of electrolyte-gated TFT and cyclic voltammetry. , 2017, , .		0
56	Solvent-gated thin-film-transistors. Physical Chemistry Chemical Physics, 2017, 19, 20573-20581.	1.3	4
57	Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors. Beilstein Journal of Nanotechnology, 2017, 8, 82-90.	1.5	15
58	Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles. Beilstein Journal of Nanotechnology, 2017, 8, 592-603.	1.5	18
59	Electrolyte gated TFT biosensors based on the Donnan's capacitance of anchored biomolecules. , 2017, , .		2
60	Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases. Beilstein Journal of Nanotechnology, 2016, 7, 22-31.	1.5	39
61	Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Analytical and Bioanalytical Chemistry, 2016, 408, 3943-3952.	1.9	63
62	Organic bioelectronics probing conformational changes in surface confined proteins. Scientific Reports, 2016, 6, 28085.	1.6	27
63	Effect of the gate metal work function on water-gated ZnO thin-film transistor performance. Journal Physics D: Applied Physics, 2016, 49, 275101.	1.3	18
64	Electrophoretic deposition of Au NPs on MWCNT-based gas sensor for tailored gas detection with enhanced sensing properties. Sensors and Actuators B: Chemical, 2016, 223, 417-428.	4.0	58
65	Surface Analytical Characterization of P3HT-Streptavidin Bilayers for Biosensing Applications. Materials Research Society Symposia Proceedings, 2015, 1795, 35-40.	0.1	0
66	Controlled electrochemical functionalization of MOx nanostructures by Au NPs for gas sensing application. Materials Research Society Symposia Proceedings, 2015, 1805, 1.	0.1	0
67	Enhancement of the gas sensing performance of carbon nanotube networked films based on their electrophoretic functionalization with gold nanoparticles. Materials Research Society Symposia Proceedings, 2015, 1786, 37-42.	0.1	2
68	Au/In ₂ O ₃ and Au/ZrO ₂ composite nanoparticles via <i>in situ</i> sacrificial gold electrolysis. Materials Express, 2015, 5, 171-179.	0.2	4
69	Printable Bioelectronics To Investigate Functional Biological Interfaces. Angewandte Chemie - International Edition, 2015, 54, 12562-12576.	7.2	86
70	Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nature Communications, 2015, 6, 6010.	5.8	204
71	A nanotube/polymer composite biosensing thin-film transistor platform for C-reactive protein detection. , 2015, , .		4
72	Sensors: Detection Beyond Debye's Length with an Electrolyteâ€Gated Organic Fieldâ€Effect Transistor (Adv. Mater. 5/2015). Advanced Materials, 2015, 27, 956-956.	11.1	0

#	Article	IF	CITATIONS
73	Electrochemical deposition of gold on indium zirconate (InZrOx with In/Zr atomic ratio 1.0) for high temperature automobile exhaust gas sensors. Journal of Solid State Electrochemistry, 2015, 19, 2859-2868.	1.2	5
74	Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers. Electrochimica Acta, 2015, 178, 45-54.	2.6	24
75	UV crosslinked poly(acrylic acid): a simple method to bio-functionalize electrolyte-gated OFET biosensors. Journal of Materials Chemistry B, 2015, 3, 5049-5057.	2.9	41
76	General Approach to the Immobilization of Glycoenzyme Chains Inside Calcium Alginate Beads for Bioassay. Analytical Chemistry, 2015, 87, 11337-11344.	3.2	21
77	Bio-functionalization of ZnO water gated thin-film transistors. , 2015, , .		8
78	Printable and flexible electronics: from TFTs to bioelectronic devices. Journal of Materials Chemistry C, 2015, 3, 12347-12363.	2.7	66
79	A hydrogel capsule as gate dielectric in flexible organic field-effect transistors. APL Materials, 2015, 3,	2.2	26
80	Tailoring Functional Interlayers in Organic Fieldâ€Effect Transistor Biosensors. Advanced Materials, 2015, 27, 7528-7551.	11.1	75
81	Detection Beyond Debye's Length with an Electrolyteâ€Gated Organic Fieldâ€Effect Transistor. Advanced Materials, 2015, 27, 911-916.	11.1	174
82	Organic bioelectronics: general discussion. Faraday Discussions, 2014, 174, 413-428.	1.6	5
83	A Comparative Study of the Gas Sensing Behavior in P3HT- and PBTTT-Based OTFTs: The Influence of Film Morphology and Contact Electrode Position. Sensors, 2014, 14, 16869-16880.	2.1	31
84	Low-voltage solid electrolyte-gated OFETs for gas sensing applications. Microelectronics Journal, 2014, 45, 1679-1683.	1.1	13
85	Photonics: general discussion. Faraday Discussions, 2014, 174, 235-253.	1.6	0
86	Direct electronic probing of biological complexes formation. Proceedings of SPIE, 2014, , .	0.8	0
87	Electrosynthesized Polystyrene Sulphonate-Capped Zinc Oxide Nanoparticles as Electrode Modifiers for Sensing Devices. Materials Research Society Symposia Proceedings, 2014, 1675, 15-20.	0.1	4
88	Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer. Faraday Discussions, 2014, 174, 383-398.	1.6	29
89	Electronic Transduction of Proton Translocations in Nanoassembled Lamellae of Bacteriorhodopsin. ACS Nano, 2014, 8, 7834-7845.	7.3	20
90	Pulsed voltage driven organic field-effect transistors for high stability transient current measurements. Organic Electronics, 2014, 15, 2372-2380.	1.4	24

#	Article	IF	CITATIONS
91	Effects of Annealing and Residual Solvents on Amorphous P3HT and PBTTT Films. Journal of Physical Chemistry C, 2014, 118, 8641-8655.	1.5	32
92	Design of novel indium oxide supported gold nanocatalysts and their application in homocoupling of arylboronic acids. Journal of Molecular Catalysis A, 2014, 386, 101-107.	4.8	14
93	Structural and Morphological Study of a Poly(3-hexylthiophene)/Streptavidin Multilayer Structure Serving as Active Layer in Ultra-Sensitive OFET Biosensors. Journal of Physical Chemistry C, 2014, 118, 15853-15862.	1.5	14
94	Electrophoretic deposition of Au NPs on CNT networks for sensitive NO ₂ detection. Journal of Sensors and Sensor Systems, 2014, 3, 245-252.	0.6	5
95	Use of butyl-methylimidazolium based ionic liquids with different anions in electrolyte-gated organic field-effect transistors. , 2013, , .		0
96	An analytical model for bio-electronic organic field-effect transistor sensors. Applied Physics Letters, 2013, 103, .	1.5	12
97	All-donor poly(arylene-ethynylene)s containing anthracene and silole-based units: Synthesis, electronic, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 4860-4872.	2.5	14
98	Plain Poly(acrylic acid) Gated Organic Field-Effect Transistors on a Flexible Substrate. ACS Applied Materials & Interfaces, 2013, 5, 10819-10823.	4.0	31
99	Organic field-effect transistor sensors: a tutorial review. Chemical Society Reviews, 2013, 42, 8612.	18.7	701
100	Comparison between different architectures of an electrolyte-gated Organic Thin-Film Transistor fabricated on flexible Kapton substrates. , 2013, , .		0
101	Hydrogenâ€Bonded Semiconducting Pigments for Airâ€Stable Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 1563-1569.	11.1	218
102	NO sensing one- and two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives. Sensors and Actuators B: Chemical, 2013, 181, 9-21.	4.0	34
103	Special Issue on Organic Electronic Bio-Devices. Biosensors, 2013, 3, 116-119.	2.3	8
104	Part per Trillion Label-Free Electronic Bioanalytical Detection. Analytical Chemistry, 2013, 85, 3849-3857.	3.2	55
105	Electrolyteâ€Gated Organic Fieldâ€Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer. Advanced Materials, 2013, 25, 2090-2094.	11.1	150
106	Chiral Sensor Devices for Differentiation of Enantiomers. Topics in Current Chemistry, 2013, 341, 133-176.	4.0	21
107	Sensors: Electrolyteâ€Gated Organic Fieldâ€Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer (Adv. Mater. 14/2013). Advanced Materials, 2013, 25, 1958-1958.	11.1	2
108	Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid membranes. Biosensors and Bioelectronics, 2013, 40, 303-307.	5.3	17

#	Article	IF	CITATIONS
109	PE VD of Hydrophilic OOH Functionalized Coatings on Electrolyte Gated Fieldâ€Effect Transistor Electronic Layers. Plasma Processes and Polymers, 2013, 10, 102-109.	1.6	26
110	Correlating Ionic Liquid Gated Organic Field-Effect Transistors Electronic Performances to Electrolytes Size and Pairing. Science of Advanced Materials, 2013, 5, 1922-1929.	0.1	6
111	One- vs two-step preparation of antimicrobial coatings composed of laser ablated copper nanoparticles and poly-lactic acid. Materials Research Society Symposia Proceedings, 2012, 1453, 1.	0.1	3
112	Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6429-6434.	3.3	109
113	Synthesis and Antimicrobial Activity of Copper Nanomaterials. , 2012, , 85-117.		36
114	NO sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B: Chemical, 2012, 171-172, 25-42.	4.0	371
115	Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Analytical and Bioanalytical Chemistry, 2012, 403, 1179-1186.	1.9	149
116	Phospholipid film in electrolyte-gated organic field-effect transistors. Organic Electronics, 2012, 13, 638-644.	1.4	54
117	Surface architectures for analytical purposes. Analytical and Bioanalytical Chemistry, 2012, 402, 1737-1738.	1.9	0
118	Microcantilevers and organic transistors: two promising classes of label-free biosensing devices which can be integrated in electronic circuits. Analytical and Bioanalytical Chemistry, 2012, 402, 1799-1811.	1.9	18
119	Solution processed ter-anthrylene-ethynylenes for annealing-activated organic field-effect transistors: a structure–performance correlation study. Journal of Materials Chemistry, 2011, 21, 15186.	6.7	14
120	Spectrochemical Characterization of Thin Layers of Lipoprotein Self-Assembled Films on Solid Supports Under Oxidation Process. Analytical Letters, 2011, 44, 747-760.	1.0	6
121	Core-shell gold nanoparticles and gold-decorated metal oxides for gas sensing applications. , 2011, , .		0
122	Advanced NOx Sensors for Mechatronic Applications. , 2011, , .		2
123	Carbon based materials for electronic bio-sensing. Materials Today, 2011, 14, 424-433.	8.3	138
124	Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants. Electrochimica Acta, 2011, 56, 3713-3720.	2.6	47
125	Innovative electronic biosensors based on organic thin film transistors. , 2011, , .		0
126	Field Effect Transistor Sensing Devices Employing Lipid Layers. Lecture Notes in Electrical Engineering, 2011, , 169-173.	0.3	2

#	Article	IF	CITATIONS
127	Solution processable ter-anthrylene-ethynylenes semiconductors: thin film transistor properties and STM study on HOPG and Au(111). Journal of Materials Chemistry, 2010, 20, 2448.	6.7	15
128	Monodispersed molecular donors for bulk hetero-junction solar cells: from molecular properties to device performances. Chemical Communications, 2010, 46, 6273.	2.2	13
129	Use of lipid bilayers as support for biomolecules integration in OTFT biosensors. , 2010, , .		0
130	Selected Peer-Reviewed Articles from the Symposium L—"Biological and Chemical Sensors and Transducers: From Materials to Systems"—of the EMRS Spring Meeting 2009. Sensor Letters, 2010, 8, 375-377.	0.4	0
131	Membrane proteins embedded in supported lipid bilayers employed in field effect electronic devices. , 2009, , .		4
132	Optical and Electronic NOx Sensors for Applications in Mechatronics. Sensors, 2009, 9, 3337-3356.	2.1	25
133	An organic field effect transistor as a selective NOx sensor operated at room temperature. Sensors and Actuators B: Chemical, 2009, 140, 445-450.	4.0	63
134	Contact effects in organic thin-film transistor sensors. Organic Electronics, 2009, 10, 233-239.	1.4	51
135	Synthesis and characterization of α,ï‰-disubstituted quaterthiophenes functionalized with polar groups for solution processed OTFTs. Tetrahedron, 2009, 65, 9833-9842.	1.0	8
136	Organic Thin-Film Transistors with Enhanced Sensing Capabilities. Springer Proceedings in Physics, 2009, , 217-224.	0.1	2
137	Organic electronic biological sensing. SPIE Newsroom, 2009, , .	0.1	1
138	Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene-thienylene) Langmuir–SchĂfer thin-films. Thin Solid Films, 2008, 516, 3263-3269.	0.8	8
139	Plasma treatment effects on Si and Si/dielectric film heterostructures. Journal of Materials Processing Technology, 2008, 206, 462-466.	3.1	1
140	A sensitivity-enhanced field-effect chiralÂsensor. Nature Materials, 2008, 7, 412-417.	13.3	404
141	9,10-Ter-anthrylene-ethynylene: a new molecular architecture for solution processed anthracene-based thin film transistors. Journal of Materials Chemistry, 2008, 18, 786.	6.7	31
142	Organic thin film transistors as plastic chiral sensors. , 2008, , .		1
143	Electrochemically Synthesised Pd- and Au-Nanoparticles as Sensing Layers in NOx-Sensitive Field Effect Devices. Lecture Notes in Electrical Engineering, 2008, , 63-75.	0.3	6
144	Au Nanoparticles as Gate Material for NO _{<i>x</i>} Field Effect Capacitive Sensors. Sensor Letters, 2008, 6, 577-584.	0.4	16

#	Article	IF	CITATIONS
145	Chemical design, synthesis and thin film supramolecular architecture for advanced performance chemo- and bio-sensing organic field effect transistors. , 2007, , .		2
146	Enhanced chemical sensing organic thin-film transistors. , 2007, , .		0
147	Oligothiophenes bearing polar groups for organic thin film transistors: synthesis, characterisation and preliminary gas sensing results. , 2007, , .		1
148	Gold nanoparticle sensors for environmental pollutant monitoring. , 2007, , .		0
149	First Detailed Determination of the Molecular Conformation and the Crystalline Packing of a Chiral Poly(3-alkylthiophene):Â Poly-3-(S)-2-methylbutylthiophene. Macromolecules, 2007, 40, 3-5.	2.2	27
150	Functionalized interfaces by plasma treatments on silicon and silicon dioxide substrates. Thin Solid Films, 2007, 515, 7195-7202.	0.8	4
151	Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Analytical and Bioanalytical Chemistry, 2007, 389, 2055-2063.	1.9	82
152	Analytical Characterisation of Pd/ZrO2 Composite Nanoparticles Employed in Heterogeneous Catalysis. Current Nanoscience, 2007, 3, 121-127.	0.7	15
153	Synthesis and field-effect properties of α,ω -disubstituted sexithiophenes bearing polar groups. Journal of Materials Chemistry, 2006, 16, 1183.	6.7	20
154	Poly(alkoxyphenyleneâ^'thienylene) Langmuirâ^'SchÃfer Thin Films for Advanced Performance Transistors. Chemistry of Materials, 2006, 18, 778-784.	3.2	40
155	Organic thin-film transistor sensors: Interface dependent and gate bias enhanced responses. Microelectronics Journal, 2006, 37, 837-840.	1.1	19
156	Core-shell Pd nanoparticles embedded in SnOx films. Synthesis, analytical characterisation and perspective application in chemiresistor-type sensing devices. Microelectronics Journal, 2006, 37, 1620-1628.	1.1	10
157	A poly(phenyleneethynylene) polymer bearing amino acid substituents as active layer in enantioselective solid-state sensors. , 2006, 6192, 237.		3
158	Interface and gate bias dependence responses of sensing organic thin-film transistors. Biosensors and Bioelectronics, 2005, 21, 782-788.	5.3	61
159	Dual ion-beam sputtering deposition of palladium-fluoropolymer nano-composites. Applied Physics A: Materials Science and Processing, 2005, 80, 791-795.	1.1	5
160	Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005, 381, 607-616.	1.9	150
161	Organic thin-film transistors as analytical and bioanalytical sensors. Analytical and Bioanalytical Chemistry, 2005, 384, 309-309.	1.9	12
162	Nanoscale organic and polymeric field-effect transistors as chemical sensors. Analytical and Bioanalytical Chemistry, 2005, 384, 310-321.	1.9	110

#	Article	IF	CITATIONS
163	Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Analytical and Bioanalytical Chemistry, 2005, 382, 1912-1918.	1.9	134
164	Organic Thin-Film Transistor Sensors: Interface Dependent and Gate Bias Enhanced Responses. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	1
165	Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chemistry of Materials, 2005, 17, 5255-5262.	3.2	716
166	Organic Thin-Film Transistors as Plastic Analytical Sensors. Analytical Chemistry, 2005, 77, 380 A-387 A.	3.2	136
167	Tailored conjugated polymer Langmuir-Schafer thin films in sensing transistors. , 2004, 5522, 36.		0
168	Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sensors and Actuators B: Chemical, 2004, 98, 204-207.	4.0	74
169	Deposition and analytical characterization of fluoropolymer thin films modified by palladium nanoparticles. Thin Solid Films, 2004, 449, 25-33.	0.8	21
170	The swelling of vapor-sensitive fluoropolymers modified with metal nanoparticles: interpretation of the material–vapor interaction mechanism. Sensors and Actuators B: Chemical, 2004, 100, 9-16.	4.0	12
171	Poly(phenyleneethynylene) polymers bearing glucose substituents as promising active layers in enantioselective chemiresistors. Sensors and Actuators B: Chemical, 2004, 100, 17-21.	4.0	29
172	Antifungal activity of polymer-based copper nanocomposite coatings. Applied Physics Letters, 2004, 85, 2417-2419.	1.5	172
173	High-performance organic thin film transistor sensors. , 2004, , .		4
174	Ion-beam sputtered palladium-fluoropolymer nano-composites as active layers for organic vapours sensors. Sensors and Actuators B: Chemical, 2003, 93, 181-186.	4.0	16
175	Regioregular polythiophene field-effect transistors employed as chemical sensors. Sensors and Actuators B: Chemical, 2003, 93, 257-262.	4.0	77
176	Side-Chain Role in Chemically Sensing Conducting Polymer Field-Effect Transistors. Journal of Physical Chemistry B, 2003, 107, 7589-7594.	1.2	101
177	Polycrystalline organic thin film transistors for advanced chemical sensing. , 2003, 5217, 167.		0
178	Sensors employing Functionalized Conducting Polymer Thin Film Transistors. , 2003, , .		0
179	Organic Thin Film Transistors for Advanced Chemical Sensing. , 2003, , .		0
180	Swelling of Metal/Teflon-like films as vapor-sensing mechanism. , 2003, , .		0

#	Article	IF	CITATIONS
181	Effect of metal clusters on the swelling of gold–fluorocarbon–polymer composite films. Applied Physics Letters, 2002, 80, 1565-1567.	1.5	22
182	Analysis of the Surface Chemical Composition and Morphological Structure of Vapor-Sensing Goldâ^'Fluoropolymer Nanocomposites. Chemistry of Materials, 2002, 14, 804-811.	3.2	37
183	Correlation between Oligothiophene Thin Film Transistor Morphology and Vapor Responses. Journal of Physical Chemistry B, 2002, 106, 12563-12568.	1.2	109
184	Organic Materials for Multifunctional Transistor-Based Devices. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
185	Correlation between surface chemical composition and vapor sensing properties of gold-fluorocarbon nanocomposites. Sensors and Actuators B: Chemical, 2002, 84, 49-54.	4.0	27
186	Electronic sensing of vapors with organic transistors. Applied Physics Letters, 2001, 78, 2229-2231.	1.5	486
187	Electrosynthesis and analytical characterisation of polypyrrole thin films modified with copper nanoparticles. Journal of Materials Chemistry, 2001, 11, 1434-1440.	6.7	61
188	Organic thin film transistors: from active materials to novel applications. Solid-State Electronics, 2001, 45, 1479-1485.	0.8	62
189	NTCDA organic thin-film-transistor as humidity sensor: weaknesses and strengths. Sensors and Actuators B: Chemical, 2001, 77, 7-11.	4.0	81
190	Nanostructured palladium–polypyrrole composites electrosynthesised from organic solvents. Electrochimica Acta, 2001, 46, 4205-4211.	2.6	88
191	Electrosynthesis and characterisation of nanostructured palladium–polypyrrole composites. Journal of Electroanalytical Chemistry, 2000, 488, 42-47.	1.9	135
192	Novel applications of organic based thin film transistors. Microelectronics Reliability, 2000, 40, 779-782.	0.9	12
193	Multi-parameter gas sensors based on organic thin-film-transistors. Sensors and Actuators B: Chemical, 2000, 67, 312-316.	4.0	315
194	Electrosynthesised thin polymer films: the role of XPS in the design of application oriented innovative materials. Journal of Electron Spectroscopy and Related Phenomena, 1999, 100, 35-53.	0.8	47
195	Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sensors and Actuators B: Chemical, 1998, 48, 362-367.	4.0	86
196	Schottky diodes and field-effect transistors based on conjugated thiophenes. Materials Science and Engineering C, 1998, 5, 233-236.	3.8	16
197	Charge transport in oligothiophene field-effect transistors. Physical Review B, 1998, 57, 2271-2275.	1.1	75
198	Conductivity-type anisotropy in molecular solids. Journal of Applied Physics, 1997, 81, 6804-6808.	1.1	156

#	Article	IF	CITATIONS
199	Organic fieldâ€effect bipolar transistors. Applied Physics Letters, 1996, 68, 1108-1110.	1.5	138
200	Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors. Science, 1996, 272, 1462-1464.	6.0	225
201	Single-Crystal and Polycrystalline Morphology of the Thiophene-Based Semiconductor α-Hexathienyl (α-6T). Macromolecules, 1996, 29, 4952-4957.	2.2	50
202	Molecular orbital energy level engineering in organic transistors. Advanced Materials, 1996, 8, 853-855.	11.1	35
203	Organic Thin-Film-Transistors with High on/off Ratios. Materials Research Society Symposia Proceedings, 1995, 377, 695.	0.1	2
204	Low Temiperature Band Transport in Alpha-Hexathienylene Thinfilm-Transistors. Materials Research Society Symposia Proceedings, 1995, 413, 419.	0.1	1
205	Thin polymeric films in organic/inorganic diodes. Advanced Materials, 1995, 7, 417-420.	11.1	7
206	Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics. Science, 1995, 268, 270-271.	6.0	959
207	Morphology of α-hexathienyl thin-film-transistor films. Journal of Materials Research, 1995, 10, 2958-2962.	1.2	50
208	Rapid thermal processing of .alphahexathienylene thin-film transistors. Chemistry of Materials, 1995, 7, 2247-2251.	3.2	50
209	Precursor Synthesis, Coupling, and TFT Evaluation of End-Substituted Thiophene Hexamers. Chemistry of Materials, 1995, 7, 2238-2240.	3.2	91
210	Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers. Chemistry of Materials, 1995, 7, 2235-2237.	3.2	116
211	Organic Heterostructure Field-Effect Transistors. Science, 1995, 269, 1560-1562.	6.0	441
212	An analytical model for shortâ€channel organic thinâ€film transistors. Journal of Applied Physics, 1995, 78, 1088-1093.	1.1	163
213	An Electroanalytical Investigation of Polybithiophene Modified Platinum Electrodes. Journal of the Electrochemical Society, 1994, 141, 2608-2610.	1.3	51
214	Electrochemically prepared glucose biosensors: kinetic and faradaic processes involving ascorbic acid and role of the electropolymerized film in preventing electrode-fouling. Fresenius' Journal of Analytical Chemistry, 1994, 349, 497-501.	1.5	23
215	Rectifying behaviour of n-titanium dioxide–polybithiophene semiconductor–polymer bilayers: an electrochemical quartz crystal microbalance investigation. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3941-3945.	1.7	6
216	Development and electroanalytical investigation of a novel rectifying semiconductor/polymer interface. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3183.	1.7	4

#	Article	IF	CITATIONS
217	Rectifying behaviour of the polymer/semiconductor heterojunction: pbT(p-type) /TiO2(n-type). Surface Science, 1992, 273, L409-L413.	0.8	7
218	Copper speciation by analytical electron spectroscopies: Case of the intercalation phase Cu0.5V2O5· 0.5H2O. Surface and Interface Analysis, 1992, 19, 513-518.	0.8	2
219	Electrosynthesis and analytical characterization of films obtained by oxidation of 2,6-diaminopyridine. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3515.	1.7	6
220	An infra-red study of the interaction between thin polybithiophene films and Pt electrodic surfaces. Synthetic Metals, 1991, 41, 575-578.	2.1	3
221	Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Analytical Chemistry, 1990, 62, 2735-2740.	3.2	559
222	Physics and applications of low-dimensional organic thin-film transistors. , 0, , .		0
223	Performance limits of organic transistors. , 0, , .		1