
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776782/publications.pdf Version: 2024-02-01

DINI-LAN LI

#	Article	IF	CITATIONS
1	Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector?. Antioxidants and Redox Signaling, 2015, 22, 1111-1129.	2.5	630
2	The Docosatriene Protectin D1 Is Produced by TH2 Skewing and Promotes Human T Cell Apoptosis via Lipid Raft Clustering. Journal of Biological Chemistry, 2005, 280, 43079-43086.	1.6	213
3	Epoxyeicosatrienoic Acids Activate K ⁺ Channels in Coronary Smooth Muscle Through a Guanine Nucleotide Binding Protein. Circulation Research, 1997, 80, 877-884.	2.0	210
4	Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cellular Physiology and Biochemistry, 2017, 44, 152-162.	1.1	187
5	Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium Channels. Circulation Research, 2001, 89, 1177-1183.	2.0	185
6	Lipid Raft Clustering and Redox Signaling Platform Formation in Coronary Arterial Endothelial Cells. Hypertension, 2006, 47, 74-80.	1.3	176
7	Activation of Nod-Like Receptor Protein 3 Inflammasomes Turns on Podocyte Injury and Glomerular Sclerosis in Hyperhomocysteinemia. Hypertension, 2012, 60, 154-162.	1.3	168
8	Role of Nitric Oxide in the Cardiovascular and Renal Systems. International Journal of Molecular Sciences, 2018, 19, 2605.	1.8	151
9	NADPH Oxidase-Mediated Triggering of Inflammasome Activation in Mouse Podocytes and Glomeruli During Hyperhomocysteinemia. Antioxidants and Redox Signaling, 2013, 18, 1537-1548.	2.5	124
10	Nod-like Receptor Protein 3 (NLRP3) Inflammasome Activation and Podocyte Injury via Thioredoxin-Interacting Protein (TXNIP) during Hyperhomocysteinemia. Journal of Biological Chemistry, 2014, 289, 27159-27168.	1.6	120
11	Reconstitution and Characterization of a Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-sensitive Ca2+ Release Channel from Liver Lysosomes of Rats. Journal of Biological Chemistry, 2007, 282, 25259-25269.	1.6	119
12	Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney International, 2004, 66, 1977-1987.	2.6	110
13	Acid Sphingomyelinase and Its Redox Amplification in Formation of Lipid Raft Redox Signaling Platforms in Endothelial Cells. Antioxidants and Redox Signaling, 2007, 9, 817-828.	2.5	107
14	Lipid Raft Clustering and Redox Signaling Platform Formation in Coronary Arterial Endothelial Cells. Hypertension, 2006, 47, 74-80.	1.3	106
15	Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease. Antioxidants and Redox Signaling, 2011, 15, 1043-1083.	2.5	102
16	Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 396-408.	1.9	102
17	Activation of Nlrp3 Inflammasomes Enhances Macrophage Lipid-Deposition and Migration: Implication of a Novel Role of Inflammasome in Atherogenesis. PLoS ONE, 2014, 9, e87552.	1.1	100
18	Endothelial NLRP3 Inflammasome Activation and Enhanced Neointima Formation in Mice by Adipokine Visfatin. American Journal of Pathology, 2014, 184, 1617-1628.	1.9	98

#	Article	IF	CITATIONS
19	Mechanisms of Homocysteine-Induced Glomerular Injury and Sclerosis. American Journal of Nephrology, 2008, 28, 254-264.	1.4	92
20	Instigation of endothelial NIrp3 inflammasome by adipokine visfatin promotes interâ€endothelial junction disruption: role of <scp>HMGB</scp> 1. Journal of Cellular and Molecular Medicine, 2015, 19, 2715-2727.	1.6	89
21	Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate. Redox Biology, 2018, 16, 21-31.	3.9	89
22	Role of Sphingolipid Mediator Ceramide in Obesity and Renal Injury in Mice Fed a High-Fat Diet. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 839-846.	1.3	88
23	Contribution of redox-dependent activation of endothelial NIrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. Journal of Molecular Medicine, 2016, 94, 1335-1347.	1.7	88
24	Coronary Endothelial Dysfunction Induced by Nucleotide Oligomerization Domain-Like Receptor Protein with Pyrin Domain Containing 3 Inflammasome Activation During Hypercholesterolemia: Beyond Inflammation. Antioxidants and Redox Signaling, 2015, 22, 1084-1096.	2.5	85
25	Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Research in Cardiology, 2001, 96, 267-274.	2.5	81
26	TRPâ€ML1 functions as a lysosomal NAADPâ€sensitive Ca ²⁺ release channel in coronary arterial myocytes. Journal of Cellular and Molecular Medicine, 2009, 13, 3174-3185.	1.6	81
27	Endothelial NLRP3 inflammasome activation and arterial neointima formation associated with acid sphingomyelinase during hypercholesterolemia. Redox Biology, 2017, 13, 336-344.	3.9	79
28	Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H274-H282.	1.5	73
29	Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 836-845.	1.9	72
30	Lysosomal Targeting and Trafficking of Acid Sphingomyelinase to Lipid Raft Platforms in Coronary Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2056-2062.	1.1	70
31	Lipid Raft Redox Signaling Platforms in Endothelial Dysfunction. Antioxidants and Redox Signaling, 2007, 9, 1457-1470.	2.5	69
32	Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia. Free Radical Biology and Medicine, 2014, 67, 211-220.	1.3	69
33	Contribution of Guanine Nucleotide Exchange Factor Vav2 to Hyperhomocysteinemic Glomerulosclerosis in Rats. Hypertension, 2009, 53, 90-96.	1.3	64
34	Membrane raft–lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular Research, 2011, 89, 401-409.	1.8	64
35	Role of renal medullary adenosine in the control of blood flow and sodium excretion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R790-R798.	0.9	63
36	Critical Role of Lipid Raft Redox Signaling Platforms in Endostatin-Induced Coronary Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 485-490.	1.1	62

#	Article	IF	CITATIONS
37	Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. Journal of Molecular Medicine, 2015, 93, 675-689.	1.7	62
38	Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. American Journal of Physiology - Renal Physiology, 2014, 306, F1236-F1242.	1.3	57
39	Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1294-1304.	1.2	56
40	Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. Journal of Molecular Medicine, 2014, 92, 473-485.	1.7	56
41	Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 482-491.	1.9	55
42	Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovascular Research, 2014, 102, 68-78.	1.8	53
43	cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H208-H215.	1.5	51
44	NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. Journal of Lipid Research, 2017, 58, 1080-1090.	2.0	51
45	Effect of Selective Inhibition of Soluble Guanylyl Cyclase on the K _{Ca} Channel Activity in Coronary Artery Smooth Muscle. Hypertension, 1998, 31, 303-308.	1.3	49
46	Acid Sphingomyelinase Gene Deficiency Ameliorates the Hyperhomocysteinemia-Induced Glomerular Injury in Mice. American Journal of Pathology, 2011, 179, 2210-2219.	1.9	49
47	Cyclic ADP-Ribose Contributes to Contraction and Ca ²⁺ Release by M ₁ Muscarinic Receptor Activation in Coronary Arterial Smooth Muscle. Journal of Vascular Research, 2003, 40, 28-36.	0.6	48
48	TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. Journal of Molecular Medicine, 2013, 91, 25-36.	1.7	48
49	Effect of Ceramide on K Ca Channel Activity and Vascular Tone in Coronary Arteries. Hypertension, 1999, 33, 1441-1446.	1.3	47
50	Activation of NLRP3 inflammasomes in mouse hepatic stellate cells during <i>Schistosoma J.</i> infection. Oncotarget, 2016, 7, 39316-39331.	0.8	47
51	Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1 ^{â^'/â^'} cells. American Journal of Physiology - Cell Physiology, 2011, 301, C421-C430.	2.1	46
52	Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. European Journal of Pharmacology, 2019, 865, 172795.	1.7	45
53	Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. Journal of Cell Science, 2012, 125, 1225-1234.	1.2	44
54	Inflammasome Activation in Chronic Glomerular Diseases. Current Drug Targets, 2017, 18, 1019-1029.	1.0	44

#	Article	IF	CITATIONS
55	Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene. Free Radical Biology and Medicine, 2010, 48, 1109-1117.	1.3	43
56	Activation of Membrane NADPH Oxidase Associated with Lysosome-Targeted Acid Sphingomyelinase in Coronary Endothelial Cells. Antioxidants and Redox Signaling, 2010, 12, 703-712.	2.5	43
57	NMDA Receptor-Mediated Activation of NADPH Oxidase and Glomerulosclerosis in Hyperhomocysteinemic Rats. Antioxidants and Redox Signaling, 2010, 13, 975-986.	2.5	43
58	NLRP3 Inflammasome Formation and Activation in Nonalcoholic Steatohepatitis: Therapeutic Target for Antimetabolic Syndrome Remedy FTZ. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	43
59	Enhanced Epithelial-to-Mesenchymal Transition Associated with Lysosome Dysfunction in Podocytes: Role of p62/Sequestosome 1 as a Signaling Hub. Cellular Physiology and Biochemistry, 2015, 35, 1773-1786.	1.1	42
60	Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 849-860.	1.9	42
61	Production and Actions of the Anandamide Metabolite Prostamide E2 in the Renal Medulla. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 770-779.	1.3	40
62	Role of ADP-ribose in 11,12-EET-induced activation of K _{Ca} channels in coronary arterial smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1229-H1236.	1.5	39
63	Lysosome-dependent Ca ²⁺ release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts. American Journal of Physiology - Cell Physiology, 2010, 298, C1209-C1216.	2.1	38
64	NAD(P)H oxidase-dependent intracellular and extracellular O2•â^' production in coronary arterial myocytes from CD38 knockout mice. Free Radical Biology and Medicine, 2012, 52, 357-365.	1.3	38
65	Requirement of translocated lysosomal V1 H ⁺ -ATPase for activation of membrane acid sphingomyelinase and raft clustering in coronary endothelial cells. Molecular Biology of the Cell, 2012, 23, 1546-1557.	0.9	37
66	Implication of CD38 gene in podocyte epithelialâ€ŧoâ€mesenchymal transition and glomerular sclerosis. Journal of Cellular and Molecular Medicine, 2012, 16, 1674-1685.	1.6	37
67	Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: role of acid sphingomyelinase gene. Oncotarget, 2016, 7, 19031-19044.	0.8	37
68	Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease. Handbook of Experimental Pharmacology, 2013, , 171-197.	0.9	36
69	Contribution of Lysosomal Vesicles to the Formation of Lipid Raft Redox Signaling Platforms in Endothelial Cells. Antioxidants and Redox Signaling, 2007, 9, 1417-1426.	2.5	35
70	Sphingolipids in obesity and related complications. Frontiers in Bioscience - Landmark, 2017, 22, 96-116.	3.0	35
71	Protective Role of Autophagy in Nlrp3 Inflammasome Activation and Medial Thickening of Mouse Coronary Arteries. American Journal of Pathology, 2018, 188, 2948-2959.	1.9	35
72	Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteineâ€induced glomerular injury. Journal of Cellular and Molecular Medicine, 2009, 13, 3303-3314.	1.6	34

#	Article	IF	CITATIONS
73	Attenuation by Statins of Membrane Raft-Redox Signaling in Coronary Arterial Endothelium. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 170-179.	1.3	34
74	Inhibition of Hyperhomocysteinemia-Induced Inflammasome Activation and Glomerular Sclerosis by NLRP3 Gene Deletion. Cellular Physiology and Biochemistry, 2014, 34, 829-841.	1.1	34
75	Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology - Cell Physiology, 2019, 317, C481-C491.	2.1	33
76	Endostatin uncouples NO and Ca2+response to bradykinin through enhanced O2â^^• production in the intact coronary endothelium. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H686-H694.	1.5	32
77	Lipid Rafts and Redox Signaling. Antioxidants and Redox Signaling, 2007, 9, 1411-1416.	2.5	32
78	Formation and function of ceramide-enriched membrane platforms with CD38 during M ₁ -receptor stimulation in bovine coronary arterial myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1743-H1752.	1.5	32
79	Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H992-H1002.	1.5	31
80	Autophagy maturation associated with <scp>CD</scp> 38â€mediated regulation of lysosome function in mouse glomerular podocytes. Journal of Cellular and Molecular Medicine, 2013, 17, 1598-1607.	1.6	31
81	Mechanism of Homocysteine-Induced Rac1/NADPH Oxidase Activation in Mesangial Cells: Role of Guanine Nucleotide Exchange Factor Vav2. Cellular Physiology and Biochemistry, 2007, 20, 909-918.	1.1	30
82	Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats. American Journal of Physiology - Renal Physiology, 2016, 310, F621-F627.	1.3	30
83	Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene. Cellular Physiology and Biochemistry, 2015, 37, 432-444.	1.1	28
84	Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Scientific Reports, 2020, 10, 1645.	1.6	28
85	Docosahexanoic Acid-Induced Coronary Arterial Dilation: Actions of 17S-Hydroxy Docosahexanoic Acid on K ⁺ Channel Activity. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 891-899.	1.3	27
86	Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3228-3236.	1.9	27
87	Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxidants and Redox Signaling, 2018, 28, 1008-1026.	2.5	27
88	Role of cyclic ADP-ribose in Ca-induced Ca release and vasoconstriction in small renal arteries. Microvascular Research, 2005, 70, 65-75.	1.1	26
89	Upregulation of cannabinoid receptor-1 and fibrotic activation of mouse hepatic stellate cells during Schistosoma J. infection: Role of NADPH oxidase. Free Radical Biology and Medicine, 2014, 71, 109-120.	1.3	26
90	Medial calcification in the arterial wall of smooth muscle cellâ€specific <i>Smpd1</i> transgenic mice: A ceramideâ€mediated vasculopathy. Journal of Cellular and Molecular Medicine, 2020, 24, 539-553.	1.6	26

#	Article	IF	CITATIONS
91	Podocytopathy and Nephrotic Syndrome in Mice with Podocyte-Specific Deletion of the Asah1 Gene. American Journal of Pathology, 2020, 190, 1211-1223.	1.9	26
92	Reversal by Growth Hormone of Homocysteine-induced Epithelial-to-Mesenchymal Transition through Membrane Raft-Redox Signaling in Podocytes. Cellular Physiology and Biochemistry, 2011, 27, 691-702.	1.1	25
93	Protective Action of Anandamide and Its COX-2 Metabolite against L-Homocysteine-Induced NLRP3 Inflammasome Activation and Injury in Podocytes. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 61-70.	1.3	24
94	Hypoxia inducible factor-1α mediates the profibrotic effect of albumin in renal tubular cells. Scientific Reports, 2017, 7, 15878.	1.6	24
95	D-Ribose Induces Podocyte NLRP3 Inflammasome Activation and Glomerular Injury via AGEs/RAGE Pathway. Frontiers in Cell and Developmental Biology, 2019, 7, 259.	1.8	24
96	Activation of TFEB ameliorates dedifferentiation of arterial smooth muscle cells and neointima formation in mice with high-fat diet. Cell Death and Disease, 2019, 10, 676.	2.7	24
97	Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in <scp>CD</scp> 38 ^{â~/a~} mice. Journal of Cellular and Molecular Medicine, 2016, 20, 1001-1013.	1.6	23
98	Endothelial acid ceramidase in exosome-mediated release of NLRP3 inflammasome products during hyperglycemia: Evidence from endothelium-specific deletion of Asah1 gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158532.	1.2	23
99	Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase. PLoS ONE, 2012, 7, e45020.	1.1	22
100	Concentration-Dependent Diversifcation Effects of Free Cholesterol Loading on Macrophage Viability and Polarization. Cellular Physiology and Biochemistry, 2015, 37, 419-431.	1.1	22
101	Intracellular two-phase Ca ²⁺ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes. American Journal of Physiology - Cell Physiology, 2013, 304, C458-C466.	2.1	21
102	Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. Messenger (Los Angeles, Calif:) Tj ETQq0 0 0	rgBT_/Ove	erlock 10 Tf 5
103	Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. International Journal of Molecular Sciences, 2020, 21, 1713.	1.8	20
104	Contribution of guanine nucleotide exchange factor Vav2 to NLRP3 inflammasome activation in mouse podocytes during hyperhomocysteinemia. Free Radical Biology and Medicine, 2017, 106, 236-244.	1.3	19
105	Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox Biology, 2021, 43, 102013.	3.9	19
106	Bioactive Lipids and Redox Signaling: Molecular Mechanism and Disease Pathogenesis. Antioxidants and Redox Signaling, 2018, 28, 911-915.	2.5	18
107	Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. , 2021, 226, 107858.		18
108	Transplantation of mesenchymal stem cells into the renal medulla attenuated salt-sensitive hypertension in Dahl S rat. Journal of Molecular Medicine, 2014, 92, 1139-1145.	1.7	17

#	Article	IF	CITATIONS
109	Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. International Journal of Molecular Sciences, 2020, 21, 1559.	1.8	17
110	Cardiovascular Pathobiology of Inflammasomes: Inflammatory Machinery and Beyond. Antioxidants and Redox Signaling, 2015, 22, 1079-1083.	2.5	16
111	Inhibitory effects of growth differentiation factor 11 on autophagy deficiency-induced dedifferentiation of arterial smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H345-H356.	1.5	16
112	Rac1 GTPase Inhibition Blocked Podocyte Injury and Glomerular Sclerosis during Hyperhomocysteinemia via Suppression of Nucleotide-Binding Oligomerization Domain-Like Receptor Containing Pyrin Domain 3 Inflammasome Activation. Kidney and Blood Pressure Research, 2019, 44, 513-532.	0.9	14
113	Reversal of Endothelial Extracellular Vesicle-Induced Smooth Muscle Phenotype Transition by Hypercholesterolemia Stimulation: Role of NLRP3 Inflammasome Activation. Frontiers in Cell and Developmental Biology, 2020, 8, 597423.	1.8	14
114	Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1246-1256.	1.2	13
115	Podocyte NLRP3 Inflammasome Activation and Formation by Adipokine Visfatin. Cellular Physiology and Biochemistry, 2019, 53, 355-365.	1.1	13
116	Myocardial ischemia and reperfusion reduce the levels of cyclic ADP-ribose in rat myocardium. Basic Research in Cardiology, 2002, 97, 312-319.	2.5	12
117	Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase. American Journal of Physiology - Renal Physiology, 2018, 315, F967-F976.	1.3	12
118	Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158856.	1.2	12
119	Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture. Journal of Inflammation Research, 2021, Volume 14, 3501-3521.	1.6	12
120	Implication of CD38 gene in autophagic degradation of collagen I in mouse coronary arterial myocytes. Frontiers in Bioscience - Landmark, 2017, 22, 558-569.	3.0	11
121	Downregulation of Lysosomal Acid Ceramidase Mediates HMGB1-Induced Migration and Proliferation of Mouse Coronary Arterial Myocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 111.	1.8	11
122	SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2028-H2037.	1.5	9
123	Simvastatin promotes <scp>NPC</scp> 1â€mediated free cholesterol efflux from lysosomes through <scp>CYP</scp> 7A1/ <scp>LXR</scp> 1± signalling pathway in ox <scp>LDL</scp> â€loaded macrophages. Journal of Cellular and Molecular Medicine, 2017, 21, 364-374.	1.6	9
124	Downregulation of microRNA-429 contributes to angiotensin II-induced profibrotic effect in rat kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F1536-F1541.	1.3	9
125	Contribution of transcription factor EB to adipoRon-induced inhibition of arterial smooth muscle cell proliferation and migration. American Journal of Physiology - Cell Physiology, 2019, 317, C1034-C1047.	2.1	9
126	Tricyclic antidepressant amitriptyline inhibits autophagic flux and prevents tube formation in vascular endothelial cells. Basic and Clinical Pharmacology and Toxicology, 2019, 124, 370-384.	1.2	9

#	Article	IF	CITATIONS
127	Instant membrane resealing in nlrp3 inflammmasome activation of endothelial cells. Frontiers in Bioscience - Landmark, 2016, 21, 635-650.	3.0	8
128	Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs. Frontiers in Bioscience - Landmark, 2016, 21, 696-706.	3.0	8
129	Stimulation of diuresis and natriuresis by renomedullary infusion of a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase. American Journal of Physiology - Renal Physiology, 2017, 313, F1068-F1076.	1.3	8
130	Podocyte Sphingolipid Signaling in Nephrotic Syndrome Cellular Physiology and Biochemistry, 2021, 55, 13-34.	1.1	8
131	Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB Journal, 2021, 35, e21732.	0.2	8
132	Lysosome Function in Cardiovascular Diseases. Cellular Physiology and Biochemistry, 2021, 55, 277-300.	1.1	7
133	Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166146.	1.8	7
134	Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. Advances in Experimental Medicine and Biology, 2021, 1349, 275-301.	0.8	7
135	Contribution of p62 to Phenotype Transition of Coronary Arterial Myocytes with Defective Autophagy. Cellular Physiology and Biochemistry, 2017, 41, 555-568.	1.1	6
136	Diuretic, Natriuretic, and Vasodepressor Activity of a Lipid Fraction Enhanced in Medium of Cultured Mouse Medullary Interstitial Cells by a Selective Fatty Acid Amide Hydrolase Inhibitor. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 187-198.	1.3	6
137	Collecting duct-specific knockout of sphingosine-1-phosphate receptor 1 aggravates DOCA-salt hypertension in mice. Journal of Hypertension, 2021, 39, 1559-1566.	0.3	6
138	Overexpression of MicroRNA-429 Transgene Into the Renal Medulla Attenuated Salt-Sensitive Hypertension in Dahl S Rats. American Journal of Hypertension, 2021, 34, 1071-1077.	1.0	6
139	Functional inhibition or genetic deletion of acid sphingomyelinase bacteriostatically inhibits <i>Anaplasma phagocytophilum</i> infection <i>in vivo</i> . Pathogens and Disease, 2021, 79, .	0.8	5
140	Exosome Biogenesis and Lysosome Function Determine Podocyte Exosome Release and Glomerular Inflammatory Response during Hyperhomocysteinemia. American Journal of Pathology, 2022, 192, 43-55.	1.9	5
141	Infusion of Valproic Acid Into the Renal Medulla Activates Stem Cell Population and Attenuates Salt-Sensitive Hypertension in Dahl S Rats. Cellular Physiology and Biochemistry, 2017, 42, 1264-1273.	1.1	4
142	Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. American Journal of Physiology - Renal Physiology, 2022, 323, F322-F334.	1.3	3
143	Mechanism of Diuresis and Natriuresis by Cannabinoids: Evidence for Inhibition of Na ⁺ -K ⁺ -ATPase in Mouse Kidney Thick Ascending Limb Tubules. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 1-11.	1.3	2
144	Lysosome Dysfunction and Medial Calcification in the Arterial Wall of Smooth Muscle Cellâ€Specific <i>Smpd1</i> Transgenic Mice: A Ceramideâ€Mediated Vasculopathy. FASEB Journal, 2019, 33, 679.13.	0.2	2

#	Article	IF	CITATIONS
145	Subendothelial Accumulation of Exosomes and Coronary Microvascular Dysfunction in Mice Lacking Acid Ceramidase. FASEB Journal, 2021, 35, .	0.2	1
146	The Proâ€atherosclerotic Mechanism of Lysosomal Free Cholesterol Accumulation in CD38â^'/â^' Macrophages. FASEB Journal, 2013, 27, 686.1.	0.2	1
147	Thioredoxinâ€Interacting Protein Mediates Hcysâ€Induced NLRP3 Inflammasome Activation in Mouse Podocytes. FASEB Journal, 2013, 27, 704.7.	0.2	1
148	Activation of Endothelial NLRP3 Inflammasomes associated with Acid Sphingomyelinaseâ€dependent Formation of Membrane Raft Redox Signaling Platforms. FASEB Journal, 2015, 29, 797.8.	0.2	1
149	Protective Action of Prostamide E2 from Homocysteineâ€induced NLRP3Inflammasome Activation and Podocyte Injury. FASEB Journal, 2015, 29, 808.12.	0.2	1
150	Enhanced Arterial Medial Calcification in Mice with Smooth Muscle‧pecific Deletion of Lysosomal Acid Ceramidase FASEB Journal, 2018, 32, 699.3.	0.2	1
151	Suppression of Glucagon-Like Peptide-1 Release by Inhibition of Intestinal NLRP3 Inflammasome Activation in Asc–/– and Nlrp3–/– Mice. Frontiers in Physiology, 2019, 10, 1213.	1.3	0
152	Contribution of Enhancer of Zeste Homolog 2Âgene in Calcification Nidus Formation and Exosome Release in Arterial Smooth Muscle Cells. FASEB Journal, 2021, 35, .	0.2	0
153	Enhanced Arterial Stiffening in Obese Mice with Smooth Muscleâ€Specific Overexpression of <i>Smpd1</i> gene. FASEB Journal, 2021, 35, .	0.2	0
154	Control of TRPML1 Channel Activity and Lysosome Trafficking by Acid Ceramidase in Mouse Coronary Arterial Endothelial Cells. FASEB Journal, 2021, 35, .	0.2	0
155	Podocyte Injury and Glomerular Inflammation Induced by Urinary Exosomes from Hyperhomocysteinemic Mice. FASEB Journal, 2021, 35, .	0.2	0
156	Redox Regulation of Lysosomeâ€MVB Interaction and Inflammatory Exosome Release during NLRP3 Inflammasome Activation by High Homocysteine in Mouse Podocytes. FASEB Journal, 2021, 35, .	0.2	0
157	Ultrasound Microbubble Delivery of Ca ²⁺ Signaling Second Messengers into Bovine Coronary Arterial Smooth Muscle Cells. FASEB Journal, 2006, 20, A1110.	0.2	0
158	NADPH OXIDASEâ€MEDIATED O ₂ ^{â^`·} PRODUCTION AMPLIFIES VASOCONSTRICTOR RESPONSE OF SMALL CORONARY ARTERIES TO M ₁ â€MUSCARINIC RECEPTOR ACTIVATION. FASEB Journal, 2006, 20, A723.	0.2	0
159	Enhanced expression and activity of NAD(P)H oxidase in mouse periaqueductal gray neurons during morphine antinociceptive tolerance. FASEB Journal, 2006, 20, A242.	0.2	0
160	Reconstitution and characterization of a lysosomal Ca ²⁺ release channel. FASEB Journal, 2006, 20, A1115.	0.2	0
161	CD38: Novel interaction with morphine analgesic pathways in mice. FASEB Journal, 2006, 20, A241.	0.2	0
162	Contribution of Rac GTPaseâ€Mediated NAD(P)H Oxidase Activation to Reduction of MMP Activity in Hcysâ€Treated Rat Mesangial Cells. FASEB Journal, 2006, 20, .	0.2	0

#	Article	IF	CITATIONS
163	Simultaneous Monitoring of Intra―and Extracellular O ₂ ^{·â^'} Production Associated with NAD(P)H Oxidase in Single Coronary Arterial Smooth Muscle Cells. FASEB Journal, 2006, 20, A723.	0.2	0
164	Role of CD38 in Morphine Tolerance. FASEB Journal, 2007, 21, A786.	0.2	0
165	Autocrine Action of NAD(P)H Oxidaseâ€Derived Extracellular Superoxide in Coronary Arterial Myocytes. FASEB Journal, 2007, 21, A797.	0.2	0
166	Vav1â€Ðependent Activation of Rac1/NAD(P)H Oxidase Signaling Induced by Homocysteine in Rat Mesangial Cells. FASEB Journal, 2007, 21, A431.	0.2	0
167	In Vivo Ultrasound Microbubbleâ€Mediated Gene Transfection and Expression Monitoring in the Renal Medulla of Rats. FASEB Journal, 2007, 21, A438.	0.2	0
168	Identity of Lysosomal NAADP‧ensitive Ca2+ Release Channels is TRPâ€ML1 in Coronary Arterial Smooth Muscle Cells. FASEB Journal, 2007, 21, .	0.2	0
169	Formation of Lipid Raft Redox Signaling Platforms in Glomerular Endothelial Cells: An Early Event of Homocysteineâ€Induced Glomerular Injury. FASEB Journal, 2007, 21, A439.	0.2	0
170	Dynamic In vivo Imaging of NADPH Oxidase Gene Expression to Monitor its Involvement in Morphine's Actions. FASEB Journal, 2008, 22, 1125.13.	0.2	0
171	Lysosomal Targeting of Acid Sphingomyelinase in the Formation of Lipid Raftâ€Redox Signaling Platforms of Coronary Arterial Endothelial Cells. FASEB Journal, 2008, 22, 914.7.	0.2	0
172	Defect and Rescue of NAADPâ€activated Ca2+ Channel Activity in Mucolipinâ€1 Deficient Human Fibroblasts. FASEB Journal, 2008, 22, 721.2.	0.2	0
173	Lipid Raftsâ€Mediated Clustering and Activation of CD38 during M1â€Receptor Stimulation in Bovine Coronary Arterial Myocytes. FASEB Journal, 2008, 22, 965.14.	0.2	0
174	NMDA Receptors Mediates Homocysteineâ€Induced Sclerotic Action on Rat Mesangial Cells. FASEB Journal, 2008, 22, 748.1.	0.2	0
175	Contribution of Vav2 to Glomerular Injury via NADPH Oxidase Activation in Hyperhomocysteinemia. FASEB Journal, 2008, 22, 1160.5.	0.2	0
176	Telemetric Signalâ€Driven Servoâ€Control of Renal Perfusion Pressure in Rats. FASEB Journal, 2008, 22, 761.27.	0.2	0
177	Dependence of Cathepsin L –induced Coronary Endothelial Dysfunction upon Activation of NAD(P)H Oxidase. FASEB Journal, 2009, 23, 937.6.	0.2	0
178	Functional Implication of Lysosomal TRPâ€ML1 Channel Deficiency: Response to NAADP. FASEB Journal, 2009, 23, 580.8.	0.2	0
179	Lipidâ€raft redox signaling platform and apoptosis of podocytes upon homocysteine stimulation. FASEB Journal, 2009, 23, 618.10.	0.2	0
180	Statins Block the Formation of Lipid Raft Redox Signaling Platforms in Coronary Endothelial Cells. FASEB Journal, 2009, 23, 937.3.	0.2	0

#	Article	IF	CITATIONS
181	Overexpression of a HIF prolylâ€4â€hydroxylase Transgene in the Renal Medulla Increases the Salt Sensitivity of Arterial Blood Pressure. FASEB Journal, 2009, 23, 1017.28.	0.2	0
182	Contribution of Hypoxia inducible factorâ€1α to the profibrotic action of angiotensin II in cultured renal medullary interstitial cells. FASEB Journal, 2009, 23, 1014.4.	0.2	0
183	Overexpression of HIFâ€1α transgene in the renal medulla attenuated saltâ€sensitive hypertension in Dahl S rats. FASEB Journal, 2010, 24, 982.13.	0.2	0
184	Salt sensitive hypertension associated with stem cell defect in the renal medulla of Dahl S rats. FASEB Journal, 2010, 24, 982.12.	0.2	0
185	Visfatinâ€Induced Lipid Raft Redox Signaling Platforms and Hyperpermeability in Glomerular Endothelial Cells. FASEB Journal, 2010, 24, 996.3.	0.2	0
186	Homocysteine induces epithelialâ€toâ€mesenchymal transition of podocytes through the activation of NADPH oxidase. FASEB Journal, 2010, 24, 1059.5.	0.2	0
187	Protection of Glomeruli from Hyperhomocysteinemiaâ€Induced Injury in Acid Sphingomyelinase Gene Knockout Mice. FASEB Journal, 2010, 24, 1059.13.	0.2	0
188	Turning on inflammatory response to homocysteine through activation of infammasomes in podocytes. FASEB Journal, 2010, 24, 590.14.	0.2	0
189	Amelioration of glomerulosclerosis by NMDA receptor blockade in hyperhomocysteinemic rats. FASEB Journal, 2010, 24, 1059.6.	0.2	0
190	Activation of Infammasomes by Visfatin in Mouse Endothelial Cells. FASEB Journal, 2010, 24, 996.4.	0.2	0
191	Implication of CD38 Gene in Podocytes Epithelial to Mesenchymal Transition and Glomerular Sclerosis. FASEB Journal, 2011, 25, 665.12.	0.2	0
192	Activation of Inflammasomes as a Triggering Mechanism of Glomerular Injury in Mice on the High Fat Diet. FASEB Journal, 2011, 25, 1028.6.	0.2	0
193	Abrogation by Growth Hormone of Homocysteineâ€Induced Epithelialâ€toâ€Mesenchymal Transition through Lipid Raft Redox Signaling in Podocytes. FASEB Journal, 2011, 25, 665.22.	0.2	0
194	Characteristics and Hypertensive Actions of Renal Medullary NALP3 Inflammasomes in Mice. FASEB Journal, 2012, 26, 879.4.	0.2	0
195	NALP3 Inflammasome Activation in the Coronary Arterial Wall of Obese Mice. FASEB Journal, 2012, 26, 877.7.	0.2	0
196	Inhibition of NADPH Oxidase Attenuates Hyperhomocysteinemiaâ€induced NALP3 Inflammasome Activation in Mouse Glomeruli. FASEB Journal, 2012, 26, 691.10.	0.2	0
197	Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine βâ€synthase. FASEB Journal, 2012, 26, 691.6.	0.2	0
198	Enhancement of Autophagy by Simvastatin through Inhibition of Rac1â€mTOR Signaling Pathway. FASEB Journal, 2012, 26, 681.3.	0.2	0

#	Article	IF	CITATIONS
199	Autophagy Maturation Controlled by CD38‣ysosome Signaling in Glomerular Podocytes of Mice. FASEB Journal, 2012, 26, 690.14.	0.2	0
200	Role of Different Reactive Oxygen Species in Homocysteineâ€induced NALP3 Inflammasome Activation in Mouse Podocytes. FASEB Journal, 2012, 26, 691.9.	0.2	0
201	Enhanced Membrane Raftâ€Redox Signaling Associated with NADPH Oxidase in Coronary Arterial Endothelium during Hypercholesterolemia. FASEB Journal, 2012, 26, 681.4.	0.2	0
202	Instigation of NALP3 Inflammasome Activation and Glomerular Injury in Mice on the High Fat Diet: Role of Acid Sphingomyelinase Gene. FASEB Journal, 2012, 26, 690.7.	0.2	0
203	Statins Inhibit NADPH Oxidase Activity by Interference with Membrane Raft Clustering Independent of Rac1 Inactivation in Endothelial Cells. FASEB Journal, 2013, 27, 878.9.	0.2	0
204	Contribution of Reactive Oxygen Species to NLRP3 Inflammasome Activation in Glomeruli of Mice with Hyperhomocysteinemia. FASEB Journal, 2013, 27, 890.3.	0.2	0
205	Epithelialâ€ŧoâ€Mesenchymal Transition Induced by Accumulation of Autophagosomes in Podocytes. FASEB Journal, 2013, 27, 889.7.	0.2	0
206	TRPâ€ML1 channelsâ€Mediated Ca2+ Release Contributes to FasLâ€Induced Lysosomal Trafficking and Interactions with the Sarcoplasmic Reticulum in Coronary Arterial Myocytes. FASEB Journal, 2013, 27, 876.3.	0.2	0
207	Regulation of Renal Sodium Excretion by Medullary NLRP3 Inflammasome Activation beyond Turning on Inflammation. FASEB Journal, 2013, 27, 1115.5.	0.2	0
208	Dyneinâ€mediated Lysosome Trafficking in Autophagic Flux of Mouse Coronary Arterial Myocytes. FASEB Journal, 2013, 27, 1092.6.	0.2	0
209	Sphingosineâ€1â€phosphate Modulates Aldosteroneâ€induced Epithelial Sodium Channel Subunit Trafficking in Renal Cortical Collecting Duct Cells. FASEB Journal, 2013, 27, 912.19.	0.2	0
210	The Anandamide Cyclooxygenaseâ€2 Metabolite, Prostamide E2, as a Novel Diuretic and Natriuretic Lipid in the Mouse Renal Medulla. FASEB Journal, 2013, 27, 703.7.	0.2	0
211	High Fat Diet Failed to Induce NALP3 Inflammasome Activation and Glomerular Injury in Apoptosisâ€Associated Speckâ€iike Protein (ASC) Knockout Mice. FASEB Journal, 2013, 27, 889.5.	0.2	0
212	Reversal of ATPâ€Induced NLRP3 Inflammasome Activation and Lipids Deposition in Macrophages from Mice Lacking Apoptosisâ€associated Speckâ€like Protein (ASC) Gene. FASEB Journal, 2013, 27, 686.11.	0.2	0
213	Inhibition of Hyperhomocysteinemiaâ€Induced Inflammasome Activation and Glomerular Sclerosis by NLRP3 Gene Deletion. FASEB Journal, 2013, 27, 704.6.	0.2	0
214	Contribution of guanine nucleotide exchange factor Vav2 to homocysteineâ€induced NLRP3 inflammasome activation in mouse podocytes (1063.6). FASEB Journal, 2014, 28, 1063.6.	0.2	0
215	Contribution of nuclear factor E2â€related factor 2 to the atherogenic phenotype transition in coronary arterial smooth muscle cells lacking CD38 gene (1065.16). FASEB Journal, 2014, 28, 1065.16.	0.2	0
216	Contribution of P62 to the Phenotype Transition of Coronary Arterial Myocytes from Mice Lacking CD38 Gene. FASEB Journal, 2015, 29, 783.11.	0.2	0

#	Article	IF	CITATIONS
217	Inhibition of MicroRNAâ€429 Expression Mediates Angiotensin Ilâ€induced Kidney Damages in Rats. FASEB Journal, 2015, 29, 960.21.	0.2	0
218	Prevention of High Fatâ€induced Podocyte Injury and Glomerular Sclerosis in Mice Lacking Nodâ€iike Receptor Protein 3: Role of Inflammasome Extinction. FASEB Journal, 2015, 29, 960.18.	0.2	0
219	Regulation of TRPML1â€mediated Dynein Activation and Autophagosome Trafficking by Acid Sphingomyelinase in Coronary Arterial Smooth Muscle Cells. FASEB Journal, 2015, 29, 782.10.	0.2	0
220	Podocyte Specific Deletion of Acid Ceramidase Predisposes Mice to Obesityâ€Induced Glomerular Injury. FASEB Journal, 2015, 29, 663.13.	0.2	0
221	Free Cholesterolâ€Induced Macrophage Proliferation via Peroxisome–Proliferator Activated Receptor Gamma (PPAR Ƴ) and Cyclin E Signaling Pathway. FASEB Journal, 2015, 29, 631.5.	0.2	0
222	Enhanced NLRP3 Inflammmasome Activation by Impairment of Instant Membrane Resealing in Endothelial Cells. FASEB Journal, 2015, 29, 797.4.	0.2	0
223	Enhanced Epithelialâ€ŧoâ€Mesenchymal Transition Associated with Lysosome Dysfunction in Podocytes: Role of p62/Sequestosome 1 as a Signaling Hub. FASEB Journal, 2015, 29, 938.9.	0.2	0
224	Ca 2+ â€dependent and Ceramideâ€mediated Membrane Repair with Annexin V Recruitment and Aggregation in Mouse Endothelial Cells. FASEB Journal, 2015, 29, 944.10.	0.2	0
225	Lysosomal Ca ²⁺ Release via TRPML1 Channels Regulated by Acid Ceramidase and Associated Sphingolipids in Podocytes. FASEB Journal, 2018, 32, 567.2.	0.2	0
226	Deficiency of Lysosomal Ceramide Hydrolysis Contributes to Enhanced Exosome Release and Calcification in Coronary Artery Myocytes. FASEB Journal, 2018, 32, 676.9.	0.2	0
227	Gut Microbial Metabolite TMAO Induces Endothelial Dysfunction by Activating the HMGB1/TLRâ€4 Signalling Pathway. FASEB Journal, 2018, 32, 902.17.	0.2	0
228	Enhanced NLRP3 Inflammasome Activation in the Arterial Endothelium with Acid Sphingomyelinase Transgene in Mice. FASEB Journal, 2018, 32, 902.14.	0.2	0
229	Contribution of p62/SQSTM1 to PDGFâ€BBâ€induced myofibroblastâ€like phenotypic transition in vascular smooth muscle cells lacking Smpd1 gene. FASEB Journal, 2018, 32, 700.5.	0.2	0
230	Contribution of High Mobility Group Box 1 to Obesityâ€Induced Podocyte Dysfunction and Glomerular Injury. FASEB Journal, 2018, 32, 562.7.	0.2	0
231	Increased Podocyte Exosome Release in Glomerular Injury induced by NLRP3 Inflammasome Activation during Hyperhomocysteinemia. FASEB Journal, 2018, 32, 562.14.	0.2	0
232	Thioredoxin Interacting Protein Deficiency Protects Against Obesityâ€Induced Podocyte Injury and Glomerular Sclerosis. FASEB Journal, 2018, 32, 562.6.	0.2	0
233	Redox Regulation of TRPML1 Channel Activity and Lysosome Trafficking in Podocytes. FASEB Journal, 2019, 33, .	0.2	0
234	Contribution of Membrane Raft Redox Signaling to Visfatinâ€Induced Inflammasome Activation and Podocyte Injury. FASEB Journal, 2019, 33, 572.4.	0.2	0

#	Article	IF	CITATIONS
235	HIFâ€prolyl Hydroxylaseâ€3 as the downstream pathway of TRPC6 Mediates Hypertensioninduced Renal Injury in 5/6 Ablation/Infarction Model. FASEB Journal, 2019, 33, 678.3.	0.2	0
236	Role of endocannabinoid system in pressure natriuresis, in mice with and without fatty acid amide hydrolase. FASEB Journal, 2019, 33, 678.7.	0.2	0
237	Enhanced Exosome Release and Inhibited TRPML1 Channel Activity in Podocytes from Mice with Podocyteâ€Restricted Deletion of Asah1 Gene. FASEB Journal, 2019, 33, 716.4.	0.2	0
238	Contribution of Ceramide Signaling to Activation of the mTORC1 Pathway and Calcification Nidus Formation in Coronary Arterial Smooth Muscle Cells. FASEB Journal, 2019, 33, 679.12.	0.2	0
239	NLRP3 Inflammasome as a Novel Target to Abrogate Nicotineâ€Induced Podocyte Injury. FASEB Journal, 2019, 33, 749.5.	0.2	0
240	Inhibitory Effect of Podocyteâ€ s pecific Silencing of Acid Sphingomyelinase Gene on NLRP3 Inflammasome Activation and Glomerular Injury During Hyperhomocysteinemia. FASEB Journal, 2022, 36, .	0.2	0
241	Fatty acid amide hydrolase (FAAH) inhibition mitigates TGFâ€Î²1â€induced fibrogenesis via the anandamide OXâ€2â€dependent pathway. FASEB Journal, 2022, 36, .	0.2	0
242	Attenuation of Obesityâ€Induced Glomerular Inflammatory Response by Inhibition of Exosome Biogenesis and Release without Changes in NLRP3 Inflammasome Activation in Podocytes. FASEB Journal, 2022, 36, .	0.2	0
243	Exosomeâ€Mediated Release of NLRP3 Inflammasome Products from Podocytes to Trigger Glomerular Inflammatory Response During Obesity. FASEB Journal, 2022, 36, .	0.2	0
244	Autophagic Deficiency and Dedifferentiation in Podocytes of Mice Lacking Acid Ceramidase (Asah1) Gene. FASEB Journal, 2022, 36, .	0.2	0
245	Enhanced Vascular Endothelial NLRP3 Inflammasome Activation by Plasma Exosomes from Liverâ€specific Acid Ceramidase Gene Knockout Mice on the High Fat Diet. FASEB Journal, 2022, 36, .	0.2	0