
Gangfeng Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nondestructive Sampling of Living Systems Using <i>in Vivo</i> Solid-Phase Microextraction. Chemical Reviews, 2011, 111, 2784-2814.	47.7	399
2	A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nature Communications, 2013, 4, 1774.	12.8	310
3	Exceptional Hydrophobicity of a Large-Pore Metal–Organic Zeolite. Journal of the American Chemical Society, 2015, 137, 7217-7223.	13.7	270
4	A critical review in calibration methods for solid-phase microextraction. Analytica Chimica Acta, 2008, 627, 184-197.	5.4	258
5	"Armorâ€Plating―Enzymes with Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2020, 59, 8786-8798.	13.8	244
6	SPME in environmental analysis. Analytical and Bioanalytical Chemistry, 2006, 386, 1059-1073.	3.7	237
7	A Convenient and Versatile Aminoâ€Acidâ€Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1463-1467.	13.8	231
8	Application of functionalized magnetic nanoparticles in sample preparation. Analytical and Bioanalytical Chemistry, 2014, 406, 377-399.	3.7	229
9	Silica–Polypyrrole Hybrids as Highâ€Performance Metalâ€Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie - International Edition, 2017, 56, 8120-8124.	13.8	214
10	New materials in solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2013, 47, 68-83.	11.4	196
11	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie - International Edition, 2020, 59, 2867-2874.	13.8	190
12	Application of nanomaterials in sample preparation. Journal of Chromatography A, 2013, 1300, 2-16.	3.7	186
13	Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges. Environmental Pollution, 2019, 245, 836-843.	7.5	185
14	A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chemical Science, 2013, 4, 351-356.	7.4	183
15	Recent developments in SPME for on-site analysis and monitoring. TrAC - Trends in Analytical Chemistry, 2006, 25, 692-703.	11.4	173
16	Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 24740-24747.	10.3	164
17	Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography–mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples. Analytica Chimica Acta, 2013, 786, 47-53.	5.4	142
18	Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta. 2015, 853, 303-310.	5.4	142

#	Article	IF	CITATIONS
19	Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. TrAC - Trends in Analytical Chemistry, 2018, 108, 135-153.	11.4	131
20	Carbon nanotube-coated solid-phase microextraction metal fiber based on sol–gel technique. Journal of Chromatography A, 2009, 1216, 4641-4647.	3.7	111
21	Comparison of thin-film microextraction and stir bar sorptive extraction for the analysis of polycyclic aromatic hydrocarbons in aqueous samples with controlled agitation conditions. Journal of Chromatography A, 2008, 1196-1197, 89-95.	3.7	105
22	Hierarchically Nanostructured Rutile Arrays: Acid Vapor Oxidation Growth and Tunable Morphologies. ACS Nano, 2009, 3, 1212-1218.	14.6	105
23	Configurations and calibration methods for passive sampling techniques. Journal of Chromatography A, 2007, 1168, 226-235.	3.7	103
24	Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna. Ecotoxicology and Environmental Safety, 2019, 180, 509-516.	6.0	101
25	Quantitative in Vivo Microsampling for Pharmacokinetic Studies Based on an Integrated Solid-Phase Microextraction System. Analytical Chemistry, 2007, 79, 4507-4513.	6.5	98
26	Automation and optimization of liquid-phase microextraction by gas chromatography. Journal of Chromatography A, 2007, 1138, 47-54.	3.7	94
27	Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Analytical and Bioanalytical Chemistry, 2018, 410, 3991-4014.	3.7	93
28	Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection. Biosensors and Bioelectronics, 2020, 156, 112095.	10.1	92
29	Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China. Marine Pollution Bulletin, 2014, 83, 358-365.	5.0	91
30	Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Analytica Chimica Acta, 2013, 794, 1-14.	5.4	90
31	Kinetic Calibration for Automated Hollow Fiber-Protected Liquid-Phase Microextraction. Analytical Chemistry, 2006, 78, 5783-5788.	6.5	89
32	Sampling-Rate Calibration for Rapid and Nonlethal Monitoring of Organic Contaminants in Fish Muscle by Solid-Phase Microextraction. Environmental Science & Technology, 2011, 45, 7792-7798.	10.0	87
33	Preparation of graphene-coated solid-phase microextraction fiber and its application on or organochlorine pesticides determination. Journal of Chromatography A, 2013, 1300, 187-192.	3.7	87
34	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie - International Edition, 2020, 59, 13947-13954.	13.8	86
35	The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles. Nanoscale, 2015, 7, 16943-16951.	5.6	84
36	Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna. Journal of Hazardous Materials, 2019, 364, 531-536.	12.4	84

#	Article	IF	CITATIONS
37	Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Analytica Chimica Acta, 2019, 1077, 67-86.	5.4	83
38	Protein-directed, hydrogen-bonded biohybrid framework. CheM, 2021, 7, 2722-2742.	11.7	83
39	Coupling solid-phase microextraction with ambient mass spectrometry: Strategies and applications. TrAC - Trends in Analytical Chemistry, 2016, 85, 61-72.	11.4	82
40	In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers. Analytica Chimica Acta, 2014, 829, 22-27.	5.4	80
41	Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	80
42	Kinetic Calibration for Automated Headspace Liquid-Phase Microextraction. Analytical Chemistry, 2005, 77, 8122-8128.	6.5	77
43	Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water. Journal of Chromatography A, 2009, 1216, 6979-6985.	3.7	73
44	Mesoporous TiO2 nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Analytica Chimica Acta, 2015, 878, 109-117.	5.4	73
45	Application of in vivo solid-phase microextraction in environmental analysis. TrAC - Trends in Analytical Chemistry, 2016, 85, 26-35.	11.4	73
46	Solid-phase microextraction–gas chromatography–time-of-flight mass spectrometry utilized for the evaluation of the new-generation super elastic fiber assemblies. Analytica Chimica Acta, 2007, 581, 221-231.	5.4	72
47	Determination of octylphenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Journal of Chromatography A, 2010, 1217, 6762-6768.	3.7	71
48	A Biocatalytic Cascade in an Ultrastable Mesoporous Hydrogenâ€Bonded Organic Framework for Pointâ€ofâ€Care Biosensing. Angewandte Chemie - International Edition, 2021, 60, 23608-23613.	13.8	71
49	Time-Weighted Average Water Sampling in Lake Ontario with Solid-Phase Microextraction Passive Samplers. Environmental Science & amp; Technology, 2007, 41, 4026-4031.	10.0	70
50	Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nature Communications, 2021, 12, 4276.	12.8	69
51	Determination of 27 pesticides in wine by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry. Microchemical Journal, 2016, 126, 415-422.	4.5	63
52	A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chemical Science, 2016, 7, 1487-1495.	7.4	63
53	Enhanced Photocatalytic Degradation of Environmental Pollutants under Visible Irradiation by a Composite Coating. Environmental Science & Technology, 2017, 51, 5137-5145.	10.0	63
54	Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 2019, 1047, 62-70.	5.4	62

#	Article	IF	CITATIONS
55	Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers. Journal of Chromatography A, 2010, 1217, 7848-7854.	3.7	61
56	On-rod standardization technique for time-weighted average water sampling with a polydimethylsiloxane rod. Journal of Chromatography A, 2006, 1124, 112-120.	3.7	60
57	Bioinspired Polydopamine Sheathed Nanofibers for High-Efficient in Vivo Solid-Phase Microextraction of Pharmaceuticals in Fish Muscle. Analytical Chemistry, 2015, 87, 3453-3459.	6.5	58
58	Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nature Communications, 2022, 13, 951.	12.8	57
59	Highly porous aerogels based on imine chemistry: syntheses and sorption properties. Journal of Materials Chemistry A, 2015, 3, 10990-10998.	10.3	56
60	Comparison of sample pretreatment methods for the determination of multiple phytohormones in plant samples by liquid chromatography–electrospray ionization-tandem mass spectrometry. Microchemical Journal, 2015, 121, 25-31.	4.5	56
61	Porous organic polymers with different pore structures for sensitive solid-phase microextraction of environmental organic pollutants. Analytica Chimica Acta, 2017, 989, 21-28.	5.4	56
62	Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 243, 365-372.	20.2	56
63	Automated polyvinylidene difluoride hollow fiber liquid-phase microextraction of flunitrazepam in plasma and urine samples for gas chromatography/tandem mass spectrometry. Journal of Chromatography A, 2009, 1216, 2241-2247.	3.7	55
64	Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. Analytica Chimica Acta, 2017, 971, 48-54.	5.4	55
65	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1-Butanol, 2-Methyl-1-propanol, 2-Butanol, and 2-Methyl-2-propanol at 298.15 K. Journal of Chemical & Engineering Data, 2004, 49, 1744-1747.	1.9	54
66	Metalâ€Organic Frameworks: A New Platform for Enzyme Immobilization. ChemBioChem, 2020, 21, 2585-2590.	2.6	54
67	Excess Molar Volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethyl Sulfoxide at 298.15 K. Journal of Chemical & Engineering Data, 2004, 49, 1839-1842.	1.9	53
68	On-Fiber Standardization Technique for Solid-Coated Solid-Phase Microextraction. Analytical Chemistry, 2007, 79, 1221-1230.	6.5	53
69	In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.). Journal of Hazardous Materials, 2016, 316, 52-59.	12.4	53
70	<i>In Vivo</i> Tracing Uptake and Elimination of Organic Pesticides in Fish Muscle. Environmental Science & amp; Technology, 2014, 48, 8012-8020.	10.0	52
71	Carbon Nanotubes Act as Contaminant Carriers and Translocate within Plants. Scientific Reports, 2015, 5, 15682.	3.3	52
72	Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish. Analytical Chemistry, 2016, 88, 5841-5848.	6.5	52

#	Article	IF	CITATIONS
73	High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO ₂ nanodots as an anode of an all-flexible sodium-ion battery. Journal of Materials Chemistry A, 2019, 7, 2626-2635.	10.3	52
74	Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Analytica Chimica Acta, 2016, 902, 205-211.	5.4	51
75	Rapid in vivo determination of fluoroquinolones in cultured puffer fish (Takifugu obscurus) muscle by solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Talanta, 2017, 175, 550-556.	5.5	51
76	Rate Constants and Mechanisms for Reactions of Bromine Radicals with Trace Organic Contaminants. Environmental Science & Technology, 2021, 55, 10502-10513.	10.0	51
77	Standardâ€free kinetic calibration for rapid onâ€site analysis by solidâ€phase microextraction. Journal of Separation Science, 2008, 31, 1167-1172.	2.5	50
78	Application of solid-phase microextraction for the determination of organophosphorus pesticides in textiles by gas chromatography with mass spectrometry. Analytica Chimica Acta, 2009, 650, 202-206.	5.4	50
79	In Situ Hydrothermally Grown TiO ₂ @C Core–Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS Applied Materials & Interfaces, 2017, 9, 1840-1846.	8.0	50
80	One-Calibrant Kinetic Calibration for On-Site Water Sampling with Solid-Phase Microextraction. Analytical Chemistry, 2009, 81, 5629-5636.	6.5	49
81	A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols. Analytica Chimica Acta, 2018, 1015, 20-26.	5.4	49
82	Application of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Chemical Communications, 2016, 52, 6829-6832.	4.1	48
83	<i>Hybrid implanted hybrid</i> hollow nanocube electrocatalyst facilitates efficient hydrogen evolution activity. Journal of Materials Chemistry A, 2019, 7, 11150-11159.	10.3	48
84	Hollow fiber liquid-phase microextraction as clean-up step for the determination of organophosphorus pesticides residues in fish tissue by gas chromatography coupled with mass spectrometry. Marine Pollution Bulletin, 2011, 63, 102-107.	5.0	47
85	Sorption properties of hydrophobic organic chemicals to micro-sized polystyrene particles. Science of the Total Environment, 2019, 690, 565-572.	8.0	47
86	Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends in Analytical Chemistry, 2021, 136, 116182.	11.4	47
87	Excess Molar Volumes and Surface Tensions of Xylene with 2-Propanol or 2-Methyl-2-propanol at 298.15 K. Journal of Chemical & Engineering Data, 2003, 48, 195-197.	1.9	46
88	Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique. Environmental Pollution, 2015, 200, 149-158.	7.5	46
89	Visible-Light Driven Efficient Overall H2O2 Production on Modified Graphitic Carbon Nitride under Ambient Conditions. Applied Catalysis B: Environmental, 2021, 285, 119726.	20.2	45
90	Calibration of solid-phase microextraction for quantitative analysis by gas chromatography. Journal of Chromatography A, 2005, 1097, 9-16.	3.7	43

#	Article	IF	CITATIONS
91	Hollow fiber based liquid phase microextraction for the determination of organochlorine pesticides in ecological textiles by gas chromatography–mass spectrometry. Talanta, 2016, 146, 375-380.	5.5	43
92	Construction of Two-Dimensional Fluorescent Covalent Organic Framework Nanosheets for the Detection and Removal of Nitrophenols. Analytical Chemistry, 2022, 94, 2517-2526.	6.5	43
93	Preparation and application of in-fibre internal standardization solid-phase microextraction. Analyst, The, 2007, 132, 256.	3.5	42
94	A New Concept of Desulfurization: The Electrochemically Driven and Green Conversion of SO ₂ to NaHSO ₄ in Aqueous Solution. Environmental Science & Technology, 2008, 42, 8585-8590.	10.0	42
95	Hierarchical Graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta, 2016, 160, 217-224.	5.5	42
96	Boronic Acid Decorated Defective Metal–Organic Framework Nanoreactors for Highâ€Efficiency Carbohydrates Separation and Labeling. Advanced Functional Materials, 2017, 27, 1702126.	14.9	42
97	Isoreticular bio-MOF 100–102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism. Analyst, The, 2015, 140, 4384-4387.	3.5	41
98	Graphene-based metal and nitrogen-doped carbon composites as adsorbents for highly sensitive solid phase microextraction of polycyclic aromatic hydrocarbons. Nanoscale, 2018, 10, 10073-10078.	5.6	41
99	Preparation and characterization of vinyl-functionalized mesoporous organosilica-coated solid-phase microextraction fiber. Journal of Chromatography A, 2012, 1247, 42-48.	3.7	40
100	Rapid in vivo determination of tetrodotoxin in pufferfish (Fugu) muscle by solid-phase microextraction coupled to high-performance liquid chromatography tandem mass spectrometry. Talanta, 2017, 171, 179-184.	5.5	40
101	Novel solidâ€phase microextraction fiber coatings: A review. Journal of Separation Science, 2022, 45, 282-304.	2.5	40
102	One-step extraction and derivatization liquid-phase microextraction for the determination of chlorophenols by gas chromatography–mass spectrometry. Journal of Chromatography A, 2009, 1216, 6267-6273.	3.7	39
103	Recent development in sample preparation techniques for plant hormone analysis. TrAC - Trends in Analytical Chemistry, 2019, 113, 224-233.	11.4	39
104	Bimetal Biomimetic Engineering Utilizing Metal–Organic Frameworks for Superoxide Dismutase Mimic. , 2022, 4, 751-757.		39
105	Preparation of C18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Analytica Chimica Acta, 2015, 873, 57-62.	5.4	38
106	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	6.5	38
107	Joint effect of nanoplastics and humic acid on the uptake of PAHs for Daphnia magna: A model study. Journal of Hazardous Materials, 2020, 391, 122195.	12.4	38
108	New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds. Journal of Hazardous Materials, 2022, 431, 128523.	12.4	38

#	Article	IF	CITATIONS
109	Time-Weighted Average Water Sampling with a Solid-Phase Microextraction Device. Analytical Chemistry, 2005, 77, 7319-7325.	6.5	37
110	Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. Journal of Chromatography A, 2021, 1640, 461961.	3.7	37
111	A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions. Proceedings of the United States of America, 2021, 118, .	7.1	37
112	Environmental fates of synthetic musks in animal and plant: An in vivo study. Chemosphere, 2015, 138, 584-591.	8.2	36
113	Excess Molar Volumes and Surface Tensions of Xylene with Isopropyl Ether or Methyltert-Butyl Ether at 298.15 K. Journal of Chemical & Engineering Data, 2004, 49, 732-734.	1.9	35
114	Automated hollow-fiber liquid-phase microextraction coupled with liquid chromatography/tandem mass spectrometry for the analysis of aflatoxin M1 in milk. Journal of Chromatography A, 2015, 1416, 137-140.	3.7	35
115	Silica–Polypyrrole Hybrids as Highâ€Performance Metalâ€Free Electrocatalysts for the Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie, 2017, 129, 8232-8236.	2.0	35
116	A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency. Analytica Chimica Acta, 2017, 987, 38-46.	5.4	35
117	Quantifying nanoplastic-bound chemicals accumulated in <i>Daphnia magna</i> with a passive dosing method. Environmental Science: Nano, 2018, 5, 776-781.	4.3	35
118	Peanut shell-derived biochar materials for effective solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental waters. Talanta, 2019, 202, 90-95.	5.5	35
119	Redox-Active Moieties in Dissolved Organic Matter Accelerate the Degradation of Nitroimidazoles in SO ₄ ^{•–} -Based Oxidation. Environmental Science & Technology, 2021, 55, 14844-14853.	10.0	35
120	In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. TrAC - Trends in Analytical Chemistry, 2021, 143, 116368.	11.4	34
121	Excess Molar Volumes and Surface Tensions of Trimethylbenzene + Ethylene Glycol Ester at 298.15 K and 313.15 K. Journal of Chemical & Engineering Data, 2006, 51, 725-729.	1.9	33
122	Iron-Mineralization-Induced Mesoporous Metal–Organic Frameworks Enable High-Efficiency Synergistic Catalysis of Natural/Nanomimic Enzymes. ACS Applied Materials & Interfaces, 2020, 12, 57343-57351.	8.0	33
123	Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples. TrAC - Trends in Analytical Chemistry, 2021, 142, 116318.	11.4	33
124	Bromine Radical (Br [•] and Br ₂ ^{•–}) Reactivity with Dissolved Organic Matter and Brominated Organic Byproduct Formation. Environmental Science & Technology, 2022, 56, 5189-5199.	10.0	33
125	Determination of organochlorine pesticides in textiles using solid-phase microextraction with gas chromatography–mass spectrometry. Microchemical Journal, 2013, 110, 280-284.	4.5	32
126	Preparation and evaluation of amino modified graphene solid-phase microextraction fiber and its application to the determination of synthetic musks in water samples. Journal of Chromatography A, 2016, 1429, 1-7.	3.7	32

#	Article	IF	CITATIONS
127	Amine-functionalized MIL-53(Al)-coated stainless steel fiber for efficient solid-phase microextraction of synthetic musks and organochlorine pesticides in water samples. Analytical and Bioanalytical Chemistry, 2017, 409, 5239-5247.	3.7	32
128	Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. Journal of Hazardous Materials, 2021, 407, 124849.	12.4	32
129	Efficient solid phase microextraction of organic pollutants based on graphene oxide/chitosan aerogel. Analytica Chimica Acta, 2022, 1195, 339462.	5.4	32
130	Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants. Journal of Chromatography A, 2016, 1450, 9-16.	3.7	31
131	Powdery polymer and carbon aerogels with high surface areas for high-performance solid phase microextraction coatings. Nanoscale, 2017, 9, 5545-5550.	5.6	31
132	Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish. Environmental Science & amp; Technology, 2018, 52, 145-151.	10.0	31
133	Allochroicâ€Graphene Oxide Linked 3D Oriented Surface Imprinting Strategy for Glycoproteins Assays. Advanced Functional Materials, 2018, 28, 1804129.	14.9	31
134	In-situ layer-by-layer synthesized TpPa-1 COF solid-phase microextraction fiber for detecting sex hormones in serum. Analytica Chimica Acta, 2020, 1137, 28-36.	5.4	31
135	Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. International Journal of Biological Macromolecules, 2021, 182, 1759-1768.	7.5	31
136	Hydrogen-Bonded Biohybrid Framework-Derived Highly Specific Nanozymes for Biomarker Sensing. Analytical Chemistry, 2021, 93, 13981-13989.	6.5	31
137	Excess Molar Volumes and Surface Tensions of Xylene with Acetone or 2-Butanone at 298.15 K. Journal of Chemical & Engineering Data, 2004, 49, 330-332.	1.9	29
138	Densities and Surface Tensions of Trimethylbenzene + Dimethyl Carbonate or + Diethyl Carbonate at 298.15 K and 313.15 K. Journal of Chemical & Engineering Data, 2006, 51, 1464-1468.	1.9	29
139	Flow-through system for the generation of standard aqueous solution of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2006, 1105, 176-179.	3.7	29
140	Headspace solid-phase microextraction gas chromatography–mass spectrometry analysis of Eupatorium odoratum extract as an oviposition repellent. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1901-1906.	2.3	29
141	In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and aloe (Barbadensis). Science of the Total Environment, 2016, 550, 1134-1140.	8.0	29
142	Trends in sensitive detection and rapid removal of sulfonamides: A review. Journal of Separation Science, 2020, 43, 1634-1652.	2.5	29
143	Disposable solid-phase microextraction fiber coupled with gas chromatography-mass spectrometry for complex matrix analysis. Analytical Methods, 2014, 6, 4895-4900.	2.7	28
144	Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre. Nanoscale, 2015, 7, 11720-11726.	5.6	28

#	Article	IF	CITATIONS
145	Rapid detection of five anesthetics in tilapias by in vivo solid phase microextraction coupling with gas chromatography-mass spectrometry. Talanta, 2017, 168, 263-268.	5.5	28
146	Hollow carbon nanobubbles-coated solid-phase microextraction fibers for the sensitive detection of organic pollutants. Analytica Chimica Acta, 2020, 1097, 85-93.	5.4	28
147	Theory and Validation of Solid-Phase Microextraction and Needle Trap Devices for Aerosol Sample. Analytical Chemistry, 2010, 82, 9521-9527.	6.5	27
148	Hollow carbon nanospheres with high surface areas for fast, broad-spectrum and sensitive adsorption of pollutants. Nanoscale, 2018, 10, 5725-5730.	5.6	27
149	Fabrication of 8-aminocaprylic acid doped UIO-66 as sensitive solid-phase microextraction fiber for nitrosamines. Talanta, 2018, 178, 629-635.	5.5	27
150	A Novel Water-Swelling Sampling Probe for in Vivo Detection of Neonicotinoids in Plants. Environmental Science & Technology, 2019, 53, 9686-9694.	10.0	27
151	"Panzerung―von Enzymen mit Metallâ€organischen Gerüsten. Angewandte Chemie, 2020, 132, 8868-888	812.0	27
152	Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Analytica Chimica Acta, 2021, 1176, 338772.	5.4	27
153	Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
154	Time-weighted average water sampling with a diffusion-based solid-phase microextraction device. Journal of Chromatography A, 2007, 1138, 42-46.	3.7	26
155	Simultaneous sampling and analysis for vapor mercury in ambient air using needle trap coupled with gas chromatography–mass spectrometry. Journal of Chromatography A, 2008, 1213, 19-24.	3.7	26
156	Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Analytica Chimica Acta, 2015, 884, 44-51.	5.4	26
157	Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds. Analytica Chimica Acta, 2018, 1029, 30-36.	5.4	26
158	Polydopamine decorated ordered mesoporous carbon for efficient removal of bilirubin under albumin-rich conditions. Journal of Materials Chemistry B, 2020, 8, 290-297.	5.8	26
159	Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. TrAC - Trends in Analytical Chemistry, 2020, 128, 115916.	11.4	26
160	Comparison of microdialysis with solid-phase microextraction for in vitro and in vivo studies. Journal of Chromatography A, 2008, 1196-1197, 46-56.	3.7	25
161	Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography–mass spectrometry. Talanta, 2015, 136, 198-203.	5.5	25
162	Sulfonated nanoparticles doped electrospun fibers with bioinspired polynorepinephrine sheath for in vivo solid-phase microextraction of pharmaceuticals in fish and vegetable. Journal of Chromatography A, 2016, 1455, 20-27.	3.7	25

#	Article	IF	CITATIONS
163	Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction. Analytica Chimica Acta, 2016, 933, 117-123.	5.4	25
164	A nanoporous carbon material coated onto steel wires for solid-phase microextraction of chlorobenzenes prior to their quantitation by gas chromatography. Mikrochimica Acta, 2018, 185, 56.	5.0	25
165	Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy. Analytica Chimica Acta, 2019, 1047, 1-8.	5.4	25
166	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie, 2020, 132, 2889-2896.	2.0	25
167	Morphology-maintaining synthesis of copper hydroxy phosphate@metal–organic framework composite for extraction and determination of trace mercury in rice. Food Chemistry, 2021, 343, 128508.	8.2	25
168	Polyelectrolyte Microcapsules Dispersed in Silicone Rubber for in Vivo Sampling in Fish Brains. Analytical Chemistry, 2015, 87, 10593-10599.	6.5	24
169	Determination of four salicylic acids in aloe by in vivo solid phase microextraction coupling with liquid chromatography-photodiode array detection. Talanta, 2018, 184, 520-526.	5.5	24
170	Headspace solid-phase microextraction of semi-volatile ultraviolet filters based on a superhydrophobic metal-organic framework stable in high-temperature steam. Talanta, 2020, 219, 121175.	5.5	24
171	Co-facial π–π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO ₂ Photoreduction. Jacs Au, 2022, 2, 1359-1374.	7.9	24
172	Carbon dots based solid phase microextraction of 2-nitroaniline followed by fluorescence sensing for selective early screening and sensitive gas chromatography-mass spectrometry determination. Analytica Chimica Acta, 2020, 1111, 147-154.	5.4	23
173	In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber. Environmental Science & Technology, 2021, 55, 12449-12458.	10.0	22
174	MOF-74/polystyrene-derived Ni-doped hierarchical porous carbon for structure-oriented extraction of polycyclic aromatic hydrocarbons and their metabolites from human biofluids. Journal of Hazardous Materials, 2022, 424, 127465.	12.4	22
175	Partitioning and accumulation rates of polycyclic aromatic hydrocarbons into polydimethylsiloxane thin films and black worms from aqueous samples. Analytica Chimica Acta, 2010, 667, 71-76.	5.4	21
176	Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency <i>cis</i> -Diol Biomolecule Detection. Analytical Chemistry, 2018, 90, 3387-3394.	6.5	21
177	A Convenient and Versatile Amino Acidâ€Boosted Biomimetic Strategy for Nondestructive Encapsulation of Biomacromolecules within Metalâ~'Organic Framework. Angewandte Chemie, 2018, 131, 1477.	2.0	21
178	Meso-/microporous carbon as an adsorbent for enhanced performance in solid-phase microextraction of chlorobenzenes. Science of the Total Environment, 2019, 681, 392-399.	8.0	21
179	Development of an on–site detection approach for rapid and highly sensitive determination of persistent organic pollutants in real aquatic environment. Analytica Chimica Acta, 2019, 1050, 88-94.	5.4	21
180	Biocatalytic Metalâ€Organic Frameworks: Promising Materials for Biosensing. ChemBioChem, 2022, 23, .	2.6	21

#	Article	IF	CITATIONS
181	PLGA-based nanofibers with a biomimetic polynoradrenaline sheath for rapid <i>in vivo</i> sampling of tetrodotoxin and sulfonamides in pufferfish. Journal of Materials Chemistry B, 2018, 6, 3655-3664.	5.8	20
182	Sheathed in situ heteroepitaxial growth metal-organic framework probe for detection of polycyclic aromatic hydrocarbons in river water and living fish. Science of the Total Environment, 2020, 729, 138971.	8.0	20
183	Impact of different modes of adsorption of natural organic matter on the environmental fate of nanoplastics. Chemosphere, 2021, 263, 127967.	8.2	20
184	Polystyrene-based nanospheres with controllable microstructures for exceptional solid phase microextraction of organic pollutants. Chemical Engineering Journal, 2022, 428, 132527.	12.7	20
185	Unprecedented Nonphotomediated Hole (<i>h</i> ^{<i>+</i>}) Oxidation System Constructed from Defective Carbon Nanotubes and Superoxides. ACS Central Science, 2021, 7, 355-364.	11.3	20
186	Simultaneous analysis of fourteen tertiary amine stimulants in human urine for doping control purposes by liquid chromatography–tandem mass spectrometry and gas chromatography–mass spectrometry. Analytica Chimica Acta, 2010, 657, 45-52.	5.4	19
187	Urine metabolomics of women from small villages exposed to high environmental cadmium levels. Environmental Toxicology and Chemistry, 2016, 35, 1268-1275.	4.3	19
188	Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization. Journal of Chromatography A, 2016, 1427, 22-28.	3.7	19
189	Highly efficient removal of organic pollutants by ultrahigh-surface-area-ethynylbenzene-based conjugated microporous polymers <i>via</i> adsorption–photocatalysis synergy. Catalysis Science and Technology, 2018, 8, 5024-5033.	4.1	19
190	Embedding Functional Biomacromolecules within Peptideâ€Directed Metal–Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie, 2020, 132, 14051-14058.	2.0	19
191	A heterogeneous pore decoration strategy on a hydrophobic microporous polymer for high-coverage capture of metabolites. Chemical Communications, 2020, 56, 7167-7170.	4.1	19
192	Role of Antioxidant Moieties in the Quenching of a Purine Radical by Dissolved Organic Matter. Environmental Science & Technology, 2022, 56, 546-555.	10.0	19
193	Facile Synthesis of a Fluorinatedâ€Squaramide Covalent Organic Framework for the Highly Efficient and Broadâ€Spectrum Removal of Per―and Polyfluoroalkyl Pollutants. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
194	Densities and Surface Tensions of Propyl Acetate + Xylenes or + Ethylbenzene from (298.15 to 308.15) K. Journal of Chemical & Engineering Data, 2007, 52, 1131-1135.	1.9	18
195	Study of complex matrix effect on solid phase microextraction for biological sample analysis. Journal of Chromatography A, 2015, 1411, 34-40.	3.7	18
196	High enrichment and ultra-trace analysis of aflatoxins in edible oils by a modified hollow-fiber liquid-phase microextraction technique. Chemical Communications, 2017, 53, 8988-8991.	4.1	18
197	A label-free IFN-Î ³ aptasensor based on target-triggered allosteric switching of aptamer beacon and streptavidin-inorganic hybrid composites. Analytica Chimica Acta, 2019, 1087, 29-35.	5.4	18
198	<i>In Vivo</i> Sampling: A Promising Technique for Detecting and Profiling Endogenous Substances in Living Systems. Journal of Agricultural and Food Chemistry, 2019, 67, 2120-2126.	5.2	18

#	Article	IF	CITATIONS
199	Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Analytica Chimica Acta, 2020, 1095, 109-117.	5.4	18
200	Hollow Covalent Organic Framework with "Shell onfined―Environment for the Effective Removal of Anionic Per―and Polyfluoroalkyl Substances. Advanced Functional Materials, 2022, 32, .	14.9	18
201	Comparison of fully-automated headspace single drop microextraction and headspace solid phase microextraction techniques for rapid analysis of No. 6 solvent residues in edible oil. Microchemical Journal, 2014, 117, 187-193.	4.5	17
202	Boronate Affinity–Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring. Chemistry - an Asian Journal, 2016, 11, 2240-2245.	3.3	17
203	Crystal morphology tuning and green post-synthetic modification of metal organic framework for HPLC enantioseparation. Talanta, 2022, 239, 123143.	5.5	17
204	Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
205	Determination of organophosphorus pesticides in ecological textiles by solid-phase microextraction with a siloxane-modified polyurethane acrylic resin fiber. Analytica Chimica Acta, 2012, 736, 62-68.	5.4	16
206	Rapid Determination of Clenbuterol in Pork by Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography–Mass Spectrometry. Journal of Chromatographic Science, 2016, 54, bmv126.	1.4	16
207	Efficient sampling and determination of airborne N-nitrosamines by needle trap device coupled with gas chromatography–mass spectrometry. Microchemical Journal, 2018, 139, 480-486.	4.5	16
208	The effect of different binders on the comprehensive performance of solid phase microextraction fiber. Analytica Chimica Acta, 2020, 1140, 50-59.	5.4	16
209	Polymer Ligand-Sensitized Lanthanide Metal–Organic Frameworks for an On-Site Analysis of a Radionuclide. Analytical Chemistry, 2021, 93, 9226-9234.	6.5	16
210	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data, 2008, 53, 1186-1191.	1.9	15
211	Rutile nanowire arrays: tunable surface densities, wettability and photochemistry. Journal of Materials Chemistry, 2011, 21, 15806.	6.7	15
212	Study on the Diffusion-Dominated Solid-Phase Microextraction Kinetics in Semisolid Sample Matrix. Analytical Chemistry, 2016, 88, 8921-8925.	6.5	15
213	Rapid separation of non-polar and weakly polar analytes with metal-organic framework MAF-5 coated capillary column. Talanta, 2016, 152, 283-287.	5.5	15
214	Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization. Talanta, 2017, 172, 155-161.	5.5	15
215	Incorporation of carbon nanotubes into graphene for highly efficient solid-phase microextraction of benzene homologues. Microchemical Journal, 2018, 139, 203-209.	4.5	15
216	Simple fabrication of zirconium and nitrogen co-doped ordered mesoporous carbon for enhanced adsorption performance towards polar pollutants. Analytica Chimica Acta, 2019, 1070, 43-50.	5.4	15

#	Article	IF	CITATIONS
217	A Biocatalytic Cascade in an Ultrastable Mesoporous Hydrogenâ€Bonded Organic Framework for Pointâ€ofâ€Care Biosensing. Angewandte Chemie, 2021, 133, 23800-23805.	2.0	15
218	A polymeric solid-phase microextraction fiber for the detection of pharmaceuticals in water samples. Journal of Chromatography A, 2020, 1623, 461171.	3.7	15
219	Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite. Analytica Chimica Acta, 2019, 1054, 17-25.	5.4	14
220	Porous carbon nano-sheets as excellent carbocatalysts for organic pollutant removal <i>via</i> persulfate activation: the role of the sp ² /sp ³ carbon ratio. Environmental Science: Nano, 2022, 9, 1748-1758.	4.3	14
221	Determination of polycyclic aromatic hydrocarbons in leather products using solid-phase microextraction coupled with gas chromatography–mass spectrometry. Microchemical Journal, 2014, 112, 159-163.	4.5	13
222	Screening and quantification of 304 pesticides and related organic pollutants in surface water using dispersive liquid–liquid microextraction coupled with gas chromatography-mass spectrometry. Analytical Methods, 2014, 6, 1743-1752.	2.7	13
223	Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta, 2020, 211, 120706.	5.5	13
224	Silencing of Pyruvate Kinase M2 <i>via</i> a Metal–Organic Framework Based Theranostic Gene Nanomedicine for Triple-Negative Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 56972-56987.	8.0	13
225	Doping control analysis for adrafinil and its major metabolites in human urine. Rapid Communications in Mass Spectrometry, 2009, 23, 1592-1600.	1.5	12
226	Investigation of the kinetic process of solid phase microextraction in complex sample. Analytica Chimica Acta, 2015, 900, 111-116.	5.4	12
227	Effect of dissolved organic matter on pre-equilibrium passive sampling: A predictive QSAR modeling study. Science of the Total Environment, 2018, 635, 53-59.	8.0	12
228	Ultrathin Self-Assembled Diphenylalanine Nanosheets through a Gold-Stabilized Strategy for High-Efficiency Adsorption/Desorption/Ionization. Analytical Chemistry, 2018, 90, 8607-8615.	6.5	12
229	A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples. Talanta, 2019, 195, 290-297.	5.5	12
230	Sample bottle coated with sorbent as a novel solid-phase extraction device for rapid on-site detection of BTEX in water. Analytica Chimica Acta, 2021, 1152, 338226.	5.4	12
231	An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
232	Mass spectrometric identification and characterization of new clomiphene metabolites in human urine by liquid chromatography–quadrupole time-of-flight tandem mass spectrometry. Journal of Chromatography A, 2012, 1243, 23-32.	3.7	11
233	Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample. Journal of Chromatography A, 2015, 1406, 27-33.	3.7	11
234	Boosting loading capacities of shapeable metal–organic framework coatings by closing the interparticle spaces of stacked nanocrystals. Chemical Communications, 2019, 55, 7223-7226.	4.1	11

#	Article	IF	CITATIONS
235	LC-MS/MS-based non-isotopically paired labeling (NIPL) strategy for the qualification and quantification of monosaccharides. Talanta, 2021, 231, 122336.	5.5	11
236	Stress symptoms and plant hormone-modulated defense response induced by the uptake of carbamazepine and ibuprofen in Malabar spinach (Basella alba L.). Science of the Total Environment, 2021, 793, 148628.	8.0	11
237	PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. Journal of Hazardous Materials, 2022, 424, 127624.	12.4	11
238	Superficially capped amino metal-organic framework for efficient solid-phase microextraction of perfluorinated alkyl substances. Journal of Chromatography A, 2022, 1669, 462959.	3.7	11
239	Application of the NU-1000 coated SPME fiber on analysis of trace organochlorine pesticides in water. Analytica Chimica Acta, 2022, 1218, 339982.	5.4	11
240	The mass transfer dynamics of hollow fiber liquid-phase microextraction and its application for rapid analysis of biological samples. Journal of Chromatography A, 2012, 1266, 10-16.	3.7	10
241	Highâ€Efficiency, Matrix Interferenceâ€Free, General Applicable Probes for Bile Acids Extraction and Detection. Advanced Science, 2018, 5, 1800774.	11.2	10
242	Removal of Cr(VI) from solution using UiO-66-NH2 prepared in a green way. Korean Journal of Chemical Engineering, 2022, 39, 1839-1849.	2.7	10
243	Recent advances in sampling and sample preparation for effect-directed environmental analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116654.	11.4	10
244	In vivo environmental metabolomic profiling via a novel microextraction fiber unravels sublethal effects of environmental norfloxacin in gut bacteria. Science of the Total Environment, 2022, 845, 157335.	8.0	10
245	Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1,1-Diethoxyethane and 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K. Journal of Chemical & Engineering Data, 2007, 52, 884-888.	1.9	9
246	Boosting the Photoelectrochemical Water Oxidation at Hematite Photoanode by Innovating a Hierarchical Ball-on-Wire-Array Structure. ACS Applied Energy Materials, 2018, 1, 5836-5841.	5.1	9
247	Carbon and Tin-Based Polyacrylonitrile Hybrid Architecture Solid Phase Microextraction Fiber for the Detection and Quantification of Antibiotic Compounds in Aqueous Environmental Systems. Molecules, 2019, 24, 1670.	3.8	9
248	Targeting Enrichment and Correlation Studies of Glutathione and Homocysteine in IgAVN Patient Urine Based on a Core–Shell Zr-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 40070-40078.	8.0	9
249	Effects of mesoporous silica particle size and pore structure on the performance of polymer-mesoporous silica mixed matrix membranes. RSC Advances, 2021, 11, 36577-36586.	3.6	9
250	Fiber-assisted emulsification microextraction coupled with gas chromatography–mass spectrometry for the determination of aromatic amines in aqueous samples. Journal of Chromatography A, 2014, 1361, 16-22.	3.7	8
251	Fast Analytical Techniques Based on Microextraction. Comprehensive Analytical Chemistry, 2015, 67, 85-134.	1.3	8
252	In vivo monitoring and exposure potency assessment of phase I metabolism of fenthion in vegetables. Journal of Hazardous Materials, 2020, 399, 123013.	12.4	8

#	Article	IF	CITATIONS
253	Facile fabrication of composited solid phase microextraction thin membranes for sensitive detections of trace hydroxylated polycyclic aromatic hydrocarbons in human urine. Analytica Chimica Acta, 2021, 1158, 338422.	5.4	8
254	Ratiometric fluorescent probe for the on-site monitoring of coexisted Hg2+ and Fâ^' in sequence. Analytica Chimica Acta, 2021, 1183, 338967.	5.4	8
255	Synergistic Catalytic Organic Pollutants Degradation and Cr(VI) Reduction by Carbon Nanotubes through an Electron-Transfer Mechanism without External Energy or Chemical Input. ACS ES&T Engineering, 2022, 2, 1221-1228.	7.6	8
256	CH-Ï€ interaction boosts photocatalytic CO2 reduction activity of a molecular cobalt catalyst anchored on carbon nitride. Cell Reports Physical Science, 2021, 2, 100681.	5.6	8
257	Amino-functionalized metal–organic frameworks for efficient solid-phase microextraction of perfluoroalkyl acids in environmental water. Microchemical Journal, 2022, 179, 107661.	4.5	8
258	High-surface Î ² -Ketoenamine linked covalent organic framework driving broad-spectrum solid phase microextraction on multi-polar aromatic esters. Analytica Chimica Acta, 2022, 1220, 340040.	5.4	8
259	Structural elucidation of new urinary tamoxifen metabolites by liquid chromatography quadrupole timeâ€ofâ€flight mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 570-578.	1.6	7
260	Microwave-assisted solid-phase synthesis of highly fluorescent carbon nanoparticles and its application in intracellular pH sensing. Talanta, 2018, 186, 80-87.	5.5	7
261	Uptake of pharmaceuticals acts as an abiotic stress and triggers variation of jasmonates in Malabar spinach (Basella alba. L). Chemosphere, 2019, 236, 124711.	8.2	7
262	Determination of the mass transfer coefficients in direct immersion solidâ€phase microextraction. Journal of Separation Science, 2020, 43, 1847-1853.	2.5	7
263	Dual-fiber solid-phase microextraction coupled with gas chromatography–mass spectrometry for the analysis of volatile compounds in traditional Chinese dry-cured ham. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1140, 121994.	2.3	7
264	Decorated traditional cellulose with nanoscale chiral metal–organic frameworks for enhanced enantioselective capture. Chemical Communications, 2021, 57, 10343-10346.	4.1	7
265	Applications of in vivo SPME based on mass spectrometry for environmental pollutants analysis and non-target metabolomics: A review. , 2022, 1, 100004.		7
266	Improving the Sensitivity of Solid-Phase Microextraction by Reducing the Volume of Off-Line Elution Solvent. Analytical Chemistry, 2018, 90, 1572-1577.	6.5	6
267	Energy-efficient construction of thermally stable superhydrophobic nanoscale stacked lamellae based solid-phase microextraction coating for the determination of non-polar compounds. Analytica Chimica Acta, 2019, 1092, 17-23.	5.4	6
268	Development of a novel solid phase microextraction calibration method for semi-solid tissue sampling. Science of the Total Environment, 2019, 655, 174-180.	8.0	6
269	From exogenous to endogenous: Advances in in vivo sampling in living systems. TrAC - Trends in Analytical Chemistry, 2022, 156, 116692.	11.4	6
270	Evaluation of the availability of bound analyte for passive sampling in the presence of mobile binding matrix. Analytica Chimica Acta, 2016, 917, 19-26.	5.4	5

#	Article	IF	CITATIONS
271	Efficient and Versatile Pipet Microextraction Device Based on a Light-Heatable Sorbent. Analytical Chemistry, 2018, 90, 8304-8308.	6.5	5
272	Flower-like architecture magnesia-carbon composite material for highly sensitive solid-phase microextraction. Talanta, 2020, 217, 121088.	5.5	5
273	Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchemical Journal, 2022, 179, 107535.	4.5	5
274	Carboxyl-Based CPMP Tag for Ultrasensitive Analysis of Disaccharides by Negative Tandem Mass Spectrometry. Analytical Chemistry, 2022, 94, 9557-9563.	6.5	5
275	Mass spectrometric identification and characterization of new toremifene metabolites in human urine by liquid chromatography quadrupole/time-of-flight tandem mass spectrometry (LC-QTOFMS). Analytical Methods, 2012, 4, 439-443.	2.7	4
276	Fabrication of powdery polymer aerogel as the stationary phase for high-resolution gas chromatographic separation. Talanta, 2018, 186, 445-451.	5.5	4
277	Enrichment and determination of sixteen trace polycyclic aromatic hydrocarbons in barbecue smoke by using a continuous magnetic solidâ€phase extraction and gas chromatographyâ€mass spectrometry. Separation Science Plus, 2020, 3, 28-36.	0.6	4
278	Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation. Chemical Communications, 2020, 56, 5476-5479.	4.1	4
279	Boosting CH ₄ selectivity in CO ₂ electroreduction using a metallacycle-based porous crystal with biomimetic adaptive cavities. Journal of Materials Chemistry A, 2022, 10, 11948-11954.	10.3	4
280	Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures. Angewandte Chemie, 2022, 134, .	2.0	4
281	Multienzyme Biocatalytic Cascade Systems in Porous Organic Frameworks for Biosensing. Chemistry - A European Journal, 2022, 28, .	3.3	4
282	Solid and Liquid Phase Equilibria in Mixtures of 1,8-Cineole with Phenol, Cyclohexanol, and ann-Alkanol. Journal of Chemical & Engineering Data, 2003, 48, 1521-1523.	1.9	3
283	Chapter 17 Passive sampling devices for measuring organic compounds in soils and sediments. Comprehensive Analytical Chemistry, 2007, , 379-390.	1.3	3
284	SPME and Environmental Analysis. , 2012, , 251-290.		3
285	PDMS-coated Î ³ CD-MOF solid-phase microextraction fiber for BTEX analysis with boosted performances. Analytica Chimica Acta, 2022, 1189, 339259.	5.4	3
286	Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic and bacteriological investigation in Escherichia coli. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	3
287	Nitrogen, oxygen-codoped hierarchically porous biochar for simultaneous enrichment and ultrasensitive determination of o-xylene and its hydroxyl metabolites in human urine by solid phase microextraction-gas chromatography-mass spectrometry. Microchemical Journal, 2022, 178, 107384.	4.5	3
288	Rapid sampling and determination of phthalate esters in indoor air using needle trap device. Microchemical Journal, 2022, 179, 107553.	4.5	3

#	Article	IF	CITATIONS
289	New materials in analytical chemistry. TrAC - Trends in Analytical Chemistry, 2012, 39, 1-2.	11.4	2
290	Development of Novel Solid-Phase Microextraction Fibers. , 2017, , 17-61.		2
291	Extraction: Solid-Phase Microextraction. , 2018, , 100-100.		2
292	InÂvivo tracing of endogenous salicylic acids as the biomarkers for evaluating the toxicity of nano-TiO2 to plants. Analytica Chimica Acta, 2021, 1145, 79-86.	5.4	2
293	When vector control and organic farming intersect: Pesticide residues on rice plants from aerial mosquito sprays. Science of the Total Environment, 2021, 773, 144708.	8.0	2
294	Application of in vivo solid phase microextraction in exploring dynamic metabolic alterations in living organisms under exogenous stimulation. Advances in Sample Preparation, 2022, 2, 100021.	3.0	2
295	Facile Synthesis of a Fluorinatedâ€Squaramide Covalent Organic Framework for the Highly Efficient and Boardâ€Spectrum Removal of Per―and Polyfluoroalkyl Substances. Angewandte Chemie, 0, , .	2.0	2
296	Unique On-Site Spinning Sampling of Highly Water-Soluble Organics Using Functionalized Monolithic Sorbents. Environmental Science & Technology, 2022, 56, 8094-8102.	10.0	2
297	Noncovalently Tagged Gas Phase Complex Ions for Screening Unknown Contaminant Metabolites in Plants. Analytical Chemistry, 2021, 93, 14929-14933.	6.5	1
298	Effect of Sodium Dodecyl Benzenesulfonate on the Formation Kinetics of Methane Hydrate. Energy & Fuels, 2022, 36, 1647-1653.	5.1	1
299	The Fabrication of Photonic Crystal Microchip with Controllable Wettability and SERS Activity based on Surface Roughness for Trace Organic Compounds Determination. Advanced Materials Interfaces, 0, , 2102178.	3.7	1
300	Application of Solid Phase Microextraction in Aqueous Sampling. , 2017, , 113-140.		0
301	Solid Phase Microextraction for Sensing Freely Dissolved Analytes in Complex Water Sample. , 2017, , 75-111.		0
302	Introduction of Solid-Phase Microextraction. , 2017, , 1-16.		0
303	Titelbild: Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blueâ€Emitting Copper Halide Ionic Hybrid Structures (Angew. Chem. 8/2022). Angewandte Chemie, 2022, 134	2.0	0