Jin-Sheng Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776603/publications.pdf Version: 2024-02-01

LIN-SHENCLIAO

#	Article	IF	CITATIONS
1	A multidentate polymer microreactor route for green mass fabrication of mesoporous NaYF ₄ clusters. Chemical Communications, 2022, 58, 1764-1767.	4.1	1
2	Sol-gel synthesis and optical temperature sensing properties of PbTiO3:Yb3+/Er3+ phosphors. Journal of Physics and Chemistry of Solids, 2022, 162, 110515.	4.0	6
3	Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nature Communications, 2022, 13, 2090.	12.8	99
4	Multifunctional ZnII–LnIII (Ln = Tb, Dy) complexes based on the amine-phenol ligand with field-induced slow magnetic relaxation, luminescence, and proton conduction. New Journal of Chemistry, 2021, 45, 3392-3399.	2.8	3
5	(Gd1-xTbx)3(Al1-yGay)5O12 green phosphors with high quantum yield and low thermal quenching via modulation the Ga3+ admixture. Journal of Luminescence, 2021, 236, 118066.	3.1	8
6	Narrow-band far red-emitting double-perovskite SrGd2Al2O7:Mn4+ phosphors. Optical Materials, 2021, 118, 111219.	3.6	14
7	NaLaMgWO6:Mn4+/Pr3+/Bi3+ bifunctional phosphors for optical thermometer and plant growth illumination matching phytochrome P and P. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119915.	3.9	18
8	Luminescence properties and energy transfer mechanism of La2ZnTiO6:Mn4+/Er3+ far-red/green dual-emitting phosphors for plant lighting. Journal of Solid State Chemistry, 2021, 303, 122470.	2.9	2
9	Europium (III) doped LiNa2B5P2O14 phosphor: Surface analysis, DFT calculations and luminescent properties. Journal of Alloys and Compounds, 2020, 822, 153606.	5.5	32
10	Dual-mode optical temperature sensing behavior of double-perovskite CaGdMgSbO6:Mn4+/Sm3+ phosphors. Journal of Luminescence, 2020, 226, 117492.	3.1	52
11	Synthesis and luminescence properties of a novel double-perovskite Ca2ScTaO6:Mn4+ far-red phosphor used for plant growth lighting. Optical Materials, 2020, 109, 110274.	3.6	23
12	Family of Chiral Zn ^{II} –Ln ^{III} (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine–Phenol Ligand Showing Multifunctional Properties. Inorganic Chemistry, 2020, 59, 2811-2824.	4.0	50
13	Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu3NbO7:Yb3+/Ho3+ phosphors. Optical Materials, 2019, 98, 109452.	3.6	60
14	Tb ^{III} /3d–Tb ^{III} clusters derived from a 1,4,7-triazacyclononane-based hexadentate ligand with field-induced slow magnetic relaxation and oxygen-sensitive luminescence. New Journal of Chemistry, 2019, 43, 4067-4074.	2.8	15
15	Multiwavelength near infrared downshift and downconversion emission of Tm3+ in double perovskite Y2MgTiO6:Mn4+/Tm3+ phosphors via resonance energy transfer. Journal of Luminescence, 2019, 213, 356-363.	3.1	17
16	Microstructure and luminescence properties of a Ce3+-doped Lu3Al5O12/Al2O3 eutectic grown by the micropulling down method. Journal of Alloys and Compounds, 2019, 794, 144-152.	5.5	7
17	Heterobimetallic copper(<scp>i</scp>) complexes bearing both 1,1′-bis(diphenylphosphino)ferrocene and functionalized 3-(2′-pyridyl)-1,2,4-triazole. New Journal of Chemistry, 2019, 43, 4261-4271.	2.8	12
18	Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Mikrochimica Acta, 2019, 186, 189.	5.0	72

JIN-SHENG LIAO

#	Article	IF	CITATIONS
19	Sol-Gel Synthesis and Optical Temperature Sensing Behavior of Double-Perovskite Gd2ZnTiO6:Yb3+/Er3+ Phosphors. ECS Journal of Solid State Science and Technology, 2019, 8, R149-R156.	1.8	6
20	Two GdIII complexes with different structures and magnetocaloric properties induced by metal ion sources. New Journal of Chemistry, 2019, 43, 18445-18450.	2.8	19
21	Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn4+ red phosphor for solid-state lighting. Journal of Alloys and Compounds, 2019, 772, 499-506.	5.5	49
22	Effect of Yb3+ concentration on tunable upconversion luminescence and optically temperature sensing behavior in Gd2TiO5:Yb3+/Er3+phosphors. Optical Materials, 2018, 75, 841-849.	3.6	45
23	Sol-gel preparation and near-infrared emission properties of Yb3+ sensitized by Mn4+ in double-perovskite La2ZnTiO6. Optical Materials, 2018, 84, 82-88.	3.6	20
24	Microwave hydrothermal synthesis and temperature sensing behavior of Lu2Ti2O7:Yb3+/Er3+ nanophosphors. Current Applied Physics, 2017, 17, 427-432.	2.4	9
25	Mononuclear Dy(III) complex based on bipyridyl-tetrazolate ligand with field-induced single-ion magnet behavior and luminescent properties. Inorganic Chemistry Communication, 2017, 79, 41-45.	3.9	10
26	Microwave hydrothermal method and photoluminescence properties of Gd 2 Sn 2 O 7 : Eu 3+ reddish orange phosphors. Journal of Luminescence, 2017, 183, 377-382.	3.1	18
27	Temperature- and vapor-induced reversible single-crystal-to-single-crystal transformations of three 2D/3D Gd ^{III} –organic frameworks exhibiting significant magnetocaloric effects. Dalton Transactions, 2017, 46, 64-70.	3.3	119
28	3d–4f heterometallic trinuclear complexes derived from amine-phenol tripodal ligands exhibiting magnetic and luminescent properties. Dalton Transactions, 2017, 46, 1153-1162.	3.3	69
29	PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Mikrochimica Acta, 2017, 184, 4141-4149.	5.0	29
30	First observation of mutual energy transfer of Mn ⁴⁺ –Er ³⁺ via different excitation in Gd ₂ ZnTiO ₆ :Mn ⁴⁺ /Er ³⁺ phosphors. Journal of Materials Chemistry C, 2017, 5, 9098-9105.	5.5	57
31	Three Gdâ€Based Metalâ€Organic Frameworks Constructed from Similar Dicarboxylate Ligands with Large Magnetic Entropy Changes. ChemistrySelect, 2017, 2, 10673-10677.	1.5	25
32	Microwave hydrothermal synthesis and upconversion luminescence properties of \$\$hbox {Yb}^{3+}\$\$ Yb 3 + / \$\$hbox {Tm}^{3+}\$\$. Bulletin of Materials Science, 2017, 40, 1447-1453.	1.7	4
33	Large magnetic entropy changes in three Gd ^{III} coordination polymers containing Gd ^{III} chains. New Journal of Chemistry, 2017, 41, 8598-8603.	2.8	62
34	Two di- and trinuclear Gd(III) clusters derived from monocarboxylates exhibiting significant magnetic entropy changes. Polyhedron, 2017, 121, 180-184.	2.2	22
35	Structural phase transitions, dielectric bistability and luminescence of two bulky ion-pair crystals [N(C ₃ H ₇) ₄] ₂ [Ln(NO ₃) ₅] (Ln =)	Tj E12@ q1 1	l 0. 78 4314 (
36	Coâ€precipitation synthesis and luminescence properties of K ₂ TiF ₆ :Mn ⁴⁺ red phosphors for warm white lightâ€emitting diodes. Luminescence, 2016, 31, 802-807.	2.9	31

JIN-SHENG LIAO

#	Article	IF	CITATIONS
37	Synthesis and photoluminescence properties of Ba3Al2O6:Eu3+ red phosphor. Journal of Materials Science, 2016, 51, 5403-5411.	3.7	20
38	Synthesis, structures and magnetocaloric properties of two dinuclear GdIII clusters derived from monocarboxylate ligands. Polyhedron, 2016, 113, 96-101.	2.2	37
39	Tricarboxylate-based Gd ^{III} coordination polymers exhibiting large magnetocaloric effects. Dalton Transactions, 2016, 45, 9209-9215.	3.3	106
40	Single red upconversion and near-infrared downconversion luminescence properties of cubic ZrO2:Y3+-Yb3+-Er3+ nanophosphors via microwave hydrothermal synthesis. Optical Materials, 2016, 62, 479-484.	3.6	17
41	NaGd(WO ₄) ₂ :Yb ³⁺ /Er ³⁺ phosphors: hydrothermal synthesis, optical spectroscopy and green upconverted temperature sensing behavior. RSC Advances, 2016, 6, 35152-35159.	3.6	44
42	Co-precipitation synthesis and upconversion luminescence properties of ZrO2:Yb3+-Ho3+. Bulletin of Materials Science, 2015, 38, 1875-1879.	1.7	4
43	Homochiral luminescent lanthanide dinuclear complexes derived from a chiral carboxylate. RSC Advances, 2015, 5, 98097-98104.	3.6	7
44	Two Gd ^{III} complexes derived from dicarboxylate ligands as cryogenic magnetorefrigerants. New Journal of Chemistry, 2015, 39, 6970-6975.	2.8	52
45	Three-dimensional two-fold interpenetrated Cr ^{III} –Gd ^{III} heterometallic framework as an attractive cryogenic magnetorefrigerant. CrystEngComm, 2015, 17, 7270-7275.	2.6	68
46	Luminescence properties of ZrW2O8:Eu3+ nanophosphors for white light emitting diodes. Materials Research Bulletin, 2015, 70, 7-12.	5.2	14
47	Preparation and luminescence properties of phosphors of rare earth complexes based on polyoxotungstates. Materials Research Bulletin, 2015, 68, 16-21.	5.2	8
48	The fluorescence properties of Yb3+ and Er3+ Co-doped YAl3(BO3)4 powders prepared by sol-gel method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 62-67.	0.6	3
49	Efficient near-infrared emission in Eu3+-Yb3+-Y3+ tri-doped cubic ZrO2 via down-conversion for silicon solar cells. Physica B: Condensed Matter, 2014, 436, 59-63.	2.7	15
50	Yb3+ concentration dependence of upconversion luminescence in Y2Sn2O7:Yb3+/Er3+ nanophosphors. Journal of Materials Science, 2014, 49, 6081-6086.	3.7	31
51	Charge compensation on the luminescence properties of ZnWO4:Tb3+ phosphors via hydrothermal synthesis. Optik, 2013, 124, 5057-5060.	2.9	13
52	Hydrothermal synthesis and photoluminescence of NaGd(MoO4)2:Tb3+ novel green phosphor. Optik, 2013, 124, 1362-1365.	2.9	28
53	Yb3+ and Er3+ co-doped Y2Ce2O7 nanoparticles: synthesis and spectroscopic properties. Bulletin of Materials Science, 2013, 36, 1147-1151.	1.7	3
54	Sol–gel preparation and photoluminescence properties of tetragonal ZrO2:Y3+, Eu3+ nanophosphors. Optical Materials, 2012, 35, 274-279.	3.6	49

Jin-Sheng Liao

#	Article	IF	CITATIONS
55	Hydrothermal preparation and luminescence property of MWO4:Sm3+ (M = Ca, Sr, Ba) red phosphors. Optik, 2012, 123, 901-905.	2.9	49
56	Sol–gel preparation and photoluminescence properties of LiLa(MoO4)2:Eu3+ phosphors. Optical Materials, 2012, 34, 1468-1472.	3.6	40
57	Synthesis and luminescence properties of BaWO4:Pr3+ microcrystal. Journal of Rare Earths, 2011, 29, 623-627.	4.8	17
58	Luminescence properties of monodispersed spherical BaWO4:Eu3+ microphosphors for white light-emitting diodes. Journal of Materials Science, 2011, 46, 1184-1189.	3.7	37
59	Synthesis and characterization of mono- and dinuclear copper(I) complexes with 3-(2-pyrimidinyl)-1,2,4-triazine. Transition Metal Chemistry, 2011, 36, 379-385.	1.4	14
60	Energy transfer and luminescence properties of Eu3+-doped NaTb(WO4)2 phosphor prepared by a facile hydrothermal method. Optical Materials, 2011, 33, 953-957.	3.6	24
61	Photoluminescence properties of NaGd(MoO4)2:Eu3+ nanophosphors prepared by sol–gel method. Materials Research Bulletin, 2010, 45, 1145-1149.	5.2	44
62	Synthesis and optimum luminescence of monodispersed spheres for BaWO4-based green phosphors with doping of Tb3+. Journal of Luminescence, 2010, 130, 762-766.	3.1	29
63	Photoluminescence properties of La2â^xEux(WO4)3 red phosphor prepared by hydrothermal method. Physica B: Condensed Matter, 2010, 405, 3507-3511.	2.7	12
64	Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor. Materials Research Bulletin, 2009, 44, 1863-1866.	5.2	50
65	Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors. Journal of Luminescence, 2009, 129, 668-671.	3.1	87
66	Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Optical Materials, 2009, 31, 1513-1516.	3.6	53
67	Synthesis process and luminescence properties of Tm3+ in AWO4 (A=Ca, Sr, Ba) blue phosphors. Journal of Alloys and Compounds, 2009, 487, 758-762.	5.5	89