Pavel Moroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2776047/publications.pdf

Version: 2024-02-01

37	1,287	20	36
papers	citations	h-index	g-index
37	37	37	2395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nature Chemistry, 2018, 10, 225-230.	13.6	129
2	The Effect of the Charge-Separating Interface on Exciton Dynamics in Photocatalytic Colloidal Heteronanocrystals. ACS Nano, 2012, 6, 8156-8165.	14.6	110
3	Energy Transfer in Quantum Dot Solids. ACS Energy Letters, 2017, 2, 154-160.	17.4	87
4	Improving the Catalytic Activity of Semiconductor Nanocrystals through Selective Domain Etching. Nano Letters, 2013, 13, 2016-2023.	9.1	84
5	Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals. ACS Nano, 2014, 8, 352-361.	14.6	81
6	Mapping the Exciton Diffusion in Semiconductor Nanocrystal Solids. ACS Nano, 2015, 9, 2926-2937.	14.6	56
7	Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays. Journal of the American Chemical Society, 2011, 133, 20488-20499.	13.7	50
8	Plasmonic Nanocrystal Solar Cells Utilizing Strongly Confined Radiation. ACS Nano, 2014, 8, 12549-12559.	14.6	50
9	Infrared Emitting PbS Nanocrystal Solids through Matrix Encapsulation. Chemistry of Materials, 2014, 26, 4256-4264.	6.7	47
10	Photocatalytic Applications of Colloidal Heterostructured Nanocrystals: What's Next?. Journal of Physical Chemistry Letters, 2015, 6, 4352-4359.	4.6	47
11	One-Dimensional Carrier Confinement in "Giant―CdS/CdSe Excitonic Nanoshells. Journal of the American Chemical Society, 2017, 139, 7815-7822.	13.7	44
12	Challenges and Prospects of Photocatalytic Applications Utilizing Semiconductor Nanocrystals. Frontiers in Chemistry, 2018, 6, 353.	3.6	42
13	Suppressed Carrier Scattering in CdS-Encapsulated PbS Nanocrystal Films. ACS Nano, 2013, 7, 6964-6977.	14.6	41
14	Photocatalytic Activity of Core/Shell Semiconductor Nanocrystals Featuring Spatial Separation of Charges. Journal of Physical Chemistry C, 2012, 116, 22786-22793.	3.1	38
15	Just Add Ligands: Self-Sustained Size Focusing of Colloidal Semiconductor Nanocrystals. Chemistry of Materials, 2018, 30, 1391-1398.	6.7	38
16	Competition of Charge and Energy Transfer Processes in Donor–Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. ACS Nano, 2018, 12, 5657-5665.	14.6	38
17	Inorganic Solids of CdSe Nanocrystals Exhibiting High Emission Quantum Yield. Advanced Functional Materials, 2012, 22, 3714-3722.	14.9	36
18	Colloidal semiconductor nanocrystals in energy transfer reactions. Chemical Communications, 2019, 55, 3033-3048.	4.1	31

#	Article	IF	Citations
19	Delayed Photoluminescence in Metal-Conjugated Fluorophores. Journal of the American Chemical Society, 2019, 141, 11286-11297.	13.7	26
20	Enhanced Emission of Nanocrystal Solids Featuring Slowly Diffusive Excitons. Journal of Physical Chemistry C, 2017, 121, 1477-1487.	3.1	20
21	Plasmon-Induced Energy Transfer: When the Game Is Worth the Candle. ACS Photonics, 2017, 4, 2290-2297.	6.6	20
22	Double-Well Colloidal Nanocrystals Featuring Two-Color Photoluminescence. Chemistry of Materials, 2017, 29, 7852-7858.	6.7	19
23	Energy Transport in CsPbBr ₃ Perovskite Nanocrystal Solids. ACS Photonics, 2020, 7, 154-164.	6.6	19
24	Exciton Generation in Semiconductor Nanocrystals via the Near-Field Plasmon Energy Transfer. Journal of Physical Chemistry C, 2015, 119, 15562-15571.	3.1	18
25	Ultrafast Photochemistry of Copper(II) Monochlorocomplexes in Methanol and Acetonitrile by Broadband Deep-UV-to-Near-IR Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 1833-1844.	2.5	15
26	Tracking the Energy Flow on Nanoscale <i>via</i> Sample-Transmitted Excitation Photoluminescence Spectroscopy. ACS Nano, 2017, 11, 4191-4197.	14.6	15
27	Lifting the Spectral Crosstalk in Multifluorophore Assemblies. Journal of Physical Chemistry C, 2017, 121, 26226-26232.	3.1	15
28	Colloidal Synthesis of Monodisperse Semiconductor Nanocrystals through Saturated Ionic Layer Adsorption. Chemistry of Materials, 2016, 28, 2823-2833.	6.7	14
29	Measuring the Time-Dependent Monomer Concentration during the Hot-Injection Synthesis of Colloidal Nanocrystals. Chemistry of Materials, 2015, 27, 6102-6108.	6.7	9
30	Optical techniques for probing the excited state dynamics of quantum dot solids. Chemical Physics, 2016, 471, 59-68.	1.9	9
31	Enabling Narrow Emission Line Widths in Colloidal Nanocrystals through Coalescence Growth. Chemistry of Materials, 2020, 32, 7524-7534.	6.7	9
32	Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. Nano Letters, 2021, 21, 7339-7346.	9.1	9
33	Thermolysis and acid-catalyzed decomposition of 4-diazotetrahydrofuran-3-ones. A new efficient synthesis of tetrasubstituted dihydrofuran-3-ones. Russian Journal of Organic Chemistry, 2012, 48, 602-604.	0.8	6
34	Ion-Mediated Ligand Exchange and Size Focusing of Semiconductor Nanocrystals in Ligand-Saturated Solutions. Journal of Physical Chemistry C, 2018, 122, 23623-23630.	3.1	6
35	Self-Assembled PbS/CdS Quantum Dot Films with Switchable Symmetry and Emission. Chemistry of Materials, 2019, 31, 7855-7863.	6.7	5
36	Oneâ€dimensional growth of colloidal PbSe nanorods in chloroalkanes. Physica Status Solidi - Rapid Research Letters, 2016, 10, 833-837.	2.4	4

#	Article	IF	CITATIONS
37	Harvesting Solar Energy by Means of Charge-Separating Nanocrystals and Their Solids. Journal of Visualized Experiments, 2012, , e4296.	0.3	0