Xing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2775132/publications.pdf

Version: 2024-02-01

430754 610775 1,734 24 18 24 citations h-index g-index papers 24 24 24 2660 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Highâ€Efficiency and Stable Perovskite Solar Cells Enabled by Lowâ€Dimensional Perovskite Surface Modifiers. Solar Rrl, 2022, 6, .	3.1	15
2	High Efficiency Perovskite Solar Cells Employing Quasiâ€2D Ruddlesdenâ€Popper/Dionâ€Jacobson Heterojunctions. Advanced Functional Materials, 2022, 32, .	7.8	23
3	Enhanced Photovoltaic Performance via a Bifunctional Additive in Tin-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 108-115.	2.5	12
4	Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Science China Chemistry, 2021, 64, 116-126.	4.2	34
5	Efficient and Stable Quasiâ€2D Perovskite Solar Cells Enabled by Thermalâ€Aged Precursor Solution. Advanced Functional Materials, 2021, 31, 2107675.	7.8	14
6	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	3.6	43
7	Waterâ€Assisted Crystal Growth in Quasiâ€2D Perovskites with Enhanced Charge Transport and Photovoltaic Performance. Advanced Energy Materials, 2020, 10, 2001832.	10.2	52
8	A surface modifier enhances the performance of the all-inorganic CsPbI ₂ Br perovskite solar cells with efficiencies approaching 15%. Physical Chemistry Chemical Physics, 2020, 22, 17847-17856.	1.3	23
9	Interfacial Chemical Bridge Constructed by Zwitterionic Sulfamic Acid for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 3186-3192.	2.5	37
10	Nonâ€Preheating Processed Quasiâ€2D Perovskites for Efficient and Stable Solar Cells. Small, 2020, 16, e1906997.	5.2	24
11	Fine Multiâ€Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Postâ€Annealing. Advanced Materials, 2019, 31, e1903889.	11.1	178
12	Efficient Defect Passivation for Perovskite Solar Cells by Controlling the Electron Density Distribution of Donorâ€i€â€Acceptor Molecules. Advanced Energy Materials, 2019, 9, 1803766.	10.2	280
13	Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group. Advanced Energy Materials, 2018, 8, 1800715.	10.2	187
14	Enhanced Photocurrent via π-Bridge Extension of Perylenemonoimide-Based Dyes for p-Type Dye-Sensitized Solar Cells and Photoelectrochemical Cells. ACS Omega, 2018, 3, 14448-14456.	1.6	10
15	Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System. ACS Energy Letters, 2018, 3, 1929-1937.	8.8	22
16	Effects of Electrolytes on the Photocurrent of Nâ€Annulated Peryleneâ€Sensitized Photoelectrochemical Cells Based on NiO as Photocathode. ChemElectroChem, 2018, 5, 3198-3205.	1.7	9
17	Molecular engineering of D–A–̀–A sensitizers for highly efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 3157-3166.	5.2	41
18	A comparative study of o,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10480-10485.	5.2	60

#	Article	IF	CITATIONS
19	Stable Inverted Planar Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Holeâ€Transport Bilayer. Advanced Energy Materials, 2017, 7, 1700763.	10.2	115
20	Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy and Environmental Science, 2017, 10, 1942-1949.	15.6	402
21	Restrain recombination by spraying pyrolysis TiO2 on NiO film for quinoxaline-based p-type dye-sensitized solar cells. Journal of Colloid and Interface Science, 2017, 490, 380-390.	5.0	13
22	Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 19393-19401.	4.0	24
23	Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 12865-12877.	5.2	66
24	New Organic Donor–Acceptor–π–Acceptor Sensitizers for Efficient Dyeâ€Sensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visibleâ€Light Irradiation. ChemSusChem, 2014, 7, 2879-2888.	3.6	50