
Cristina Potrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2774828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers. Materials, 2022, 15, 2641.	2.9	0
2	Human Blood Platelets Adsorption on Polymeric Materials for Liquid Biopsy. Sensors, 2022, 22, 4788.	3.8	1
3	Exploring a new approach for regenerative medicine: Ti-doped polycrystalline diamond layers as bioactive platforms for osteoblast-like cells growth. Applied Surface Science, 2021, 540, 148334.	6.1	11
4	Biofunctional Surfaces for Smart Entrapment of Polysomes. Applied Sciences (Switzerland), 2021, 11, 776.	2.5	0
5	Functionalization of TiO2 sol-gel derived films for cell confinement. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111787.	5.0	2
6	Decoding distinctive features of plasma extracellular vesicles in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 52.	10.8	19
7	On-Chip Purification of Tetracyclines Based on Copper Ions Interaction. Sensors, 2021, 21, 7236.	3.8	2
8	Photofabrication of polymeric biomicrofluidics: New insights into material selection. Materials Science and Engineering C, 2020, 106, 110166.	7.3	5
9	PDMS-Based Microdevices for the Capture of MicroRNA Biomarkers. Applied Sciences (Switzerland), 2020, 10, 3867.	2.5	4
10	Rapid Nickel-based Isolation of Extracellular Vesicles from Different Biological Fluids. Bio-protocol, 2020, 10, e3512.	0.4	7
11	AFM1 Detection in Milk by Fab' Functionalized Si3N4 Asymmetric Mach–Zehnder Interferometric Biosensors. Toxins, 2019, 11, 409.	3.4	21
12	Prototyping a memristive-based device to analyze neuronal excitability. Biophysical Chemistry, 2019, 253, 106212.	2.8	8
13	A new silanizing agent tailored to surface bio-functionalization. Colloids and Surfaces B: Biointerfaces, 2019, 181, 166-173.	5.0	10
14	Ultrasensitive detection of cancer biomarkers by nickel-based isolation of polydisperse extracellular vesicles from blood. EBioMedicine, 2019, 43, 114-126.	6.1	40
15	Simple PDMS microdevice for biomedical applications. Talanta, 2019, 193, 44-50.	5.5	29
16	3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	18
17	Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 381-394.	3.1	128
18	Innovative Silicon Microgrippers for Biomedical Applications: Design, Mechanical Simulation and Evaluation of Protein Fouling. Actuators, 2018, 7, 12.	2.3	21

CRISTINA POTRICH

#	Article	IF	CITATIONS
19	miRNA purification with an optimized PDMS microdevice: Toward the direct purification of low abundant circulating biomarkers. Biophysical Chemistry, 2017, 229, 142-150.	2.8	16
20	Primary cortical neurons on PMCS TiO 2 films towards bio-hybrid memristive device: A morpho-functional study. Biophysical Chemistry, 2017, 229, 115-122.	2.8	9
21	The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 295-306.	3.1	165
22	Cell transfer of information via miR-loaded exosomes: a biophysical approach. European Biophysics Journal, 2017, 46, 803-811.	2.2	4
23	Enhancing miRNAs Capture on Polydimethylsiloxane Surface with Nanostructuration. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	1.1	1
24	Bio-functional surfaces for the immunocapture of AGO2-bound microRNAs. Colloids and Surfaces B: Biointerfaces, 2016, 146, 746-753.	5.0	6
25	XPS analysis of genomic DNA adsorbed on PEIâ€modified surfaces. Surface and Interface Analysis, 2016, 48, 611-615.	1.8	31
26	Smart detection of microRNAs through fluorescence enhancement on a photonic crystal. Talanta, 2016, 150, 699-704.	5.5	13
27	On-chip purification and detection of hepatitis C virus RNA from human plasma. Biophysical Chemistry, 2016, 208, 54-61.	2.8	12
28	SPAD aptasensor for the detection of circulating protein biomarkers. Biosensors and Bioelectronics, 2015, 68, 500-507.	10.1	24
29	Internalization of staphylococcal leukotoxins that bind and divert the C 5a receptor is required for intracellular Ca 2+ mobilization by human neutrophils. Cellular Microbiology, 2015, 17, 1241-1257.	2.1	14
30	Enhanced fluorescence detection of miRNA-16 on a photonic crystal. Analyst, The, 2015, 140, 5459-5463.	3.5	31
31	Innovative microRNA purification based on surface properties modulation. Colloids and Surfaces B: Biointerfaces, 2014, 116, 160-168.	5.0	14
32	OncomiR detection in circulating body fluids: a PDMS microdevice perspective. Lab on A Chip, 2014, 14, 4067-4075.	6.0	24
33	The Making of "on-Chip PCR in Real-Time―for Food Quality Control. BioNanoScience, 2013, 3, 123-131.	3.5	0
34	<i>p</i> -Sulfonato-calix[<i>n</i>]arenes inhibit staphylococcal bicomponent leukotoxins by supramolecular interactions. Biochemical Journal, 2013, 450, 559-571.	3.7	24
35	One-shot genetic analysis in monolithic Silicon/Pyrex microdevices. Biomedical Microdevices, 2012, 14, 1103-1113.	2.8	6
36	Solid phase DNA extraction on PDMS and direct amplification. Lab on A Chip, 2011, 11, 4029.	6.0	37

CRISTINA POTRICH

#	Article	IF	CITATIONS
37	Organo-silane coated substrates for DNA purification. Applied Surface Science, 2011, 257, 10821-10827.	6.1	16
38	Hemocompatibility of pyrolytic carbon in comparison with other biomaterials. Diamond and Related Materials, 2011, 20, 762-769.	3.9	14
39	A Micro Polymerase Chain Reaction Module for Integrated and Portable DNA Analysis Systems. Journal of Sensors, 2011, 2011, 1-7.	1.1	7
40	Deoxycholate as an efficient coating agent for hydrophilic silicon nanocrystals. Journal of Colloid and Interface Science, 2011, 358, 86-92.	9.4	21
41	Effect of materials for micro-electro-mechanical systems on PCR yield. European Biophysics Journal, 2010, 39, 979-986.	2.2	15
42	EPR and FTIR studies reveal the importance of highly ordered sterol-enriched membrane domains for ostreolysin activity. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 891-902.	2.6	10
43	The Influence of Membrane Lipids in StaphylococcusÂaureus Gamma-Hemolysins Pore Formation. Journal of Membrane Biology, 2009, 227, 13-24.	2.1	37
44	Fabrication of a MEMS-based separation module for liquid chromatography. Sensors and Actuators B: Chemical, 2008, 130, 181-186.	7.8	10
45	Structural Features of Distinctin Affecting Peptide Biological and Biochemical Properties. Biochemistry, 2008, 47, 7888-7899.	2.5	29
46	Identifying the Minimal Copper- and Zinc-binding Site Sequence in Amyloid-Î ² Peptides. Journal of Biological Chemistry, 2008, 283, 10784-10792.	3.4	184
47	Structure and Activity of the N-Terminal Region of the Eukaryotic Cytolysin Equinatoxin IIâ€. Biochemistry, 2006, 45, 1818-1828.	2.5	53
48	Metal binding in amyloid β-peptides shows intra- and inter-peptide coordination modes. European Biophysics Journal, 2006, 35, 340-351.	2.2	104
49	Staphylococcus aureusBicomponent γ-Hemolysins, HlgA, HlgB, and HlgC, Can Form Mixed Pores Containing All Components. Journal of Chemical Information and Modeling, 2005, 45, 1539-1545.	5.4	25
50	Cytotoxic Activity of a Tumor Protease-Activated Pore-Forming Toxin. Bioconjugate Chemistry, 2005, 16, 369-376.	3.6	36
51	Inter- and Intra-octarepeat Cu(II) Site Geometries in the Prion Protein. Journal of Biological Chemistry, 2004, 279, 11753-11759.	3.4	81
52	Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. FEBS Journal, 2003, 270, 1199-1210.	0.2	63
53	Effects of Lipid Composition on Membrane Permeabilization by Sticholysin I and II, Two Cytolysins of the Sea Anemone Stichodactyla helianthus. Biophysical Journal, 2001, 80, 2761-2774.	0.5	176
54	Sizing the Radius of the Pore Formed in Erythrocytes and Lipid Vesicles by the Toxin Sticholysin I from the Sea The Sea Anemone Stichodactyla helianthus. Journal of Membrane Biology, 2001, 183, 125-135.	2.1	108

#	Article	IF	CITATIONS
55	Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates. , 2000, 86, 582-589.		16
56	Lysine 77 is a Key Residue in Aggregation of Equinatoxin II, a Pore-forming Toxin from Sea Anemone Actinia equina. Journal of Membrane Biology, 2000, 173, 47-55.	2.1	43