
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/277480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 2011, 42, 760-771.	3.8	906
2	SMPSO: A new PSO-based metaheuristic for multi-objective optimization. , 2009, , .		393
3	AbYSS: Adapting Scatter Search to Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2008, 12, 439-457.	10.0	297
4	MOCell: A cellular genetic algorithm for multiobjective optimization. International Journal of Intelligent Systems, 2009, 24, 726-746.	5.7	231
5	The jMetal framework for multi-objective optimization: Design and architecture. , 2010, , .		202
6	A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 2014, 49, 537-558.	3.5	157
7	A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm and Evolutionary Computation, 2021, 64, 100888.	8.1	154
8	jMetalPy: A Python framework for multi-objective optimization with metaheuristics. Swarm and Evolutionary Computation, 2019, 51, 100598.	8.1	143
9	Redesigning the jMetal Multi-Objective Optimization Framework. , 2015, , .		119
10	A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems. IEEE Transactions on Evolutionary Computation, 2010, 14, 618-635.	10.0	107
11	Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. Lecture Notes in Computer Science, 2009, , 495-509.	1.3	101
12	The incidence of rheumatoid arthritis in Spain: results from a nationwide primary care registry. Rheumatology, 2008, 47, 1088-1092.	1.9	100
13	A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Computer Communications, 2007, 30, 685-697.	5.1	79
14	Heterogeneous Computing and Parallel Genetic Algorithms. Journal of Parallel and Distributed Computing, 2002, 62, 1362-1385.	4.1	78
15	A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME. Information Sciences, 2019, 471, 233-251.	6.9	67
16	Multiâ€objective optimization using metaheuristics: nonâ€standard algorithms. International Transactions in Operational Research, 2012, 19, 283-305.	2.7	62
17	A study of the bi-objective next release problem. Empirical Software Engineering, 2011, 16, 29-60.	3.9	61
18	A study of master-slave approaches to parallelize NSGA-II. Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on, 2008, , .	1.0	60

#	Article	IF	CITATIONS
19	Parallel heterogeneous genetic algorithms for continuous optimization. Parallel Computing, 2004, 30, 699-719.	2.1	52
20	Why Is Optimization Difficult?. Studies in Computational Intelligence, 2009, , 1-50.	0.9	52
21	Design Issues in a Multiobjective Cellular Genetic Algorithm. , 2007, , 126-140.		48
22	A Study of the Multi-objective Next Release Problem. , 2009, , .		47
23	Solving molecular flexible docking problems with metaheuristics: A comparative study. Applied Soft Computing Journal, 2015, 28, 379-393.	7.2	44
24	ACO vs EAs for solving a real-world frequency assignment problem in GSM networks. , 2007, , .		43
25	Optimal antenna placement using a new multi-objective chc algorithm. , 2007, , .		43
26	Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Computers and Operations Research, 2013, 40, 1552-1563.	4.0	42
27	On the Effect of the Steady-State Selection Scheme in Multi-Objective Genetic Algorithms. Lecture Notes in Computer Science, 2009, , 183-197.	1.3	42
28	DNA fragment assembly using a grid-based genetic algorithm. Computers and Operations Research, 2008, 35, 2776-2790.	4.0	35
29	Using multi-objective metaheuristics to solve the software project scheduling problem. , 2011, , .		35
30	Convergence speed in multiâ€objective metaheuristics: Efficiency criteria and empirical study. International Journal for Numerical Methods in Engineering, 2010, 84, 1344-1375.	2.8	32
31	A Study of the Parallelization of the Multi-Objective Metaheuristic MOEA/D. Lecture Notes in Computer Science, 2010, , 303-317.	1.3	32
32	Optimization algorithms for large-scale real-world instances of the frequency assignment problem. Soft Computing, 2011, 15, 975-990.	3.6	31
33	jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics, 2014, 30, 437-438.	4.1	28
34	jMetalSP: A framework for dynamic multi-objective big data optimization. Applied Soft Computing Journal, 2018, 69, 737-748.	7.2	27
35	Multi-Objective Optimization using Grid Computing. Soft Computing, 2007, 11, 531-540.	3.6	26
36	Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm. Engineering Optimization, 2008, 40, 1067-1084.	2.6	25

#	Article	IF	CITATIONS
37	Analysis of leader selection strategies in a multi-objective Particle Swarm Optimizer. , 2013, , .		24
38	BIGOWL: Knowledge centered Big Data analytics. Expert Systems With Applications, 2019, 115, 543-556.	7.6	24
39	A comparative study of the effect of parameter scalability in multi-objective metaheuristics. , 2008, , .		23
40	Evolutionary algorithms for solving the automatic cell planning problem: a survey. Engineering Optimization, 2010, 42, 671-690.	2.6	23
41	Observations in using Grid-enabled technologies for solving multi-objective optimization problems. Parallel Computing, 2006, 32, 377-393.	2.1	22
42	Metaheuristics for solving a real-world frequency assignment problem in GSM networks. , 2008, , .		22
43	Solving Molecular Docking Problems with Multi-Objective Metaheuristics. Molecules, 2015, 20, 10154-10183.	3.8	22
44	InDM2: Interactive Dynamic Multi-Objective Decision Making Using Evolutionary Algorithms. Swarm and Evolutionary Computation, 2018, 40, 184-195.	8.1	22
45	A Study of Convergence Speed in Multi-objective Metaheuristics. Lecture Notes in Computer Science, 2008, , 763-772.	1.3	21
46	New Ideas in Applying Scatter Search to Multiobjective Optimization. Lecture Notes in Computer Science, 2005, , 443-458.	1.3	19
47	Distribution of Computational Effort in ParallelÂMOEA/D. Lecture Notes in Computer Science, 2011, , 488-502.	1.3	19
48	Molecular Docking Optimization in the Context of Multi-Drug Resistant and Sensitive EGFR Mutants. Molecules, 2016, 21, 1575.	3.8	18
49	Energy-Aware Multi-Objective Job Shop Scheduling Optimization with Metaheuristics in Manufacturing Industries: A Critical Survey, Results, and Perspectives. Applied Sciences (Switzerland), 2022, 12, 1491.	2.5	17
50	Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Structural and Multidisciplinary Optimization, 2016, 53, 545-566.	3.5	16
51	Multi-objective Big Data Optimization with jMetal and Spark. Lecture Notes in Computer Science, 2017, , 16-30.	1.3	16
52	Parallel Multiobjective Optimization. , 2005, , 371-394.		15
53	Comparing multi-objective metaheuristics for solving a three-objective formulation of multiple sequence alignment. Progress in Artificial Intelligence, 2017, 6, 195-210.	2.4	14
54	M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic. Bioinformatics, 2017, 33, 3011-3017.	4.1	14

#	Article	IF	CITATIONS
55	Automatic configuration of NSGA-II with jMetal and irace. , 2019, , .		14
56	Bio-inspired optimization for the molecular docking problem: State of the art, recent results and perspectives. Applied Soft Computing Journal, 2019, 79, 30-45.	7.2	13
57	Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0. Engineering Applications of Artificial Intelligence, 2019, 82, 30-43.	8.1	13
58	Multi-objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Optimization. Studies in Computational Intelligence, 2011, , 49-74.	0.9	12
59	<scp>MO</scp> â€Phylogenetics: a phylogenetic inference software tool with multiâ€objective evolutionary metaheuristics. Methods in Ecology and Evolution, 2016, 7, 800-805.	5.2	12
60	Evolutionary Algorithms for Real-World Instances of the Automatic Frequency Planning Problem in GSM Networks. Lecture Notes in Computer Science, 2007, , 108-120.	1.3	12
61	On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II. Studies in Computational Intelligence, 2009, , 435-456.	0.9	12
62	A Study of the Combination of Variation Operators in the NSGA-II Algorithm. Lecture Notes in Computer Science, 2013, , 269-278.	1.3	10
63	Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. Computer Journal, 2016, 59, 777-792.	2.4	10
64	Multi-objective ligand-protein docking with particle swarm optimizers. Swarm and Evolutionary Computation, 2019, 44, 439-452.	8.1	10
65	On the design of a framework integrating an optimization engine with streaming technologies. Future Generation Computer Systems, 2020, 107, 538-550.	7.5	10
66	TITAN: A knowledge-based platform for Big Data workflow management. Knowledge-Based Systems, 2021, 232, 107489.	7.1	9
67	Multiple Sequence Alignment with Multiobjective Metaheuristics. A Comparative Study. International Journal of Intelligent Systems, 2017, 32, 843-861.	5.7	8
68	Artificial Decision Maker Driven by PSO: An Approach for Testing Reference Point Based Interactive Methods. Lecture Notes in Computer Science, 2018, , 274-285.	1.3	8
69	Merge Nondominated Sorting Algorithm for Many-Objective Optimization. IEEE Transactions on Cybernetics, 2020, PP, 1-11.	9.5	8
70	Parallel Heterogeneous Metaheuristics. , 2005, , 395-422.		7
71	Integrating a multi-objective optimization framework into a structural design software. Advances in Engineering Software, 2014, 76, 161-170.	3.8	7
72	Multi-objective metaheuristics for preprocessing EEG data in brain–computer interfaces. Engineering Optimization, 2012, 44, 373-390.	2.6	6

ANTONIO J NEBRO

#	Article	IF	CITATIONS
73	Multi-objective Design of Time-Constrained Bike Routes Using Bio-inspired Meta-heuristics. Lecture Notes in Computer Science, 2018, , 197-210.	1.3	6
74	Reconstruction of gene regulatory networks with multi-objective particle swarm optimisers. Applied Intelligence, 2021, 51, 1972-1991.	5.3	6
75	Injecting domain knowledge in multi-objective optimization problems: A semantic approach. Computer Standards and Interfaces, 2021, 78, 103546.	5.4	6
76	Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2009, , 305-319.	1.3	6
77	An efficient local improvement operator for the multi-objective wireless sensor network deployment problem. Engineering Optimization, 2011, 43, 1115-1139.	2.6	5
78	Multi-Objective Optimization of Bike Routes for Last-Mile Package Delivery with Drop-Offs. , 2018, , .		5
79	Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation. Lecture Notes in Computer Science, 2018, , 298-310.	1.3	5
80	Inference of gene regulatory networks with multi-objective cellular genetic algorithm. Computational Biology and Chemistry, 2019, 80, 409-418.	2.3	5
81	Optimal Broadcasting in Metropolitan MANETs Using Multiobjective Scatter Search. Lecture Notes in Computer Science, 2006, , 255-266.	1.3	5
82	A Multi-objective Optimization Framework for Multiple Sequence Alignment with Metaheuristics. Lecture Notes in Computer Science, 2017, , 245-256.	1.3	4
83	Qom—A New Hydrologic Prediction Model Enhanced with Multi-Objective Optimization. Applied Sciences (Switzerland), 2020, 10, 251.	2.5	4
84	Design and architecture of the jMetaISP framework. , 2017, , .		3
85	Sequoya: multiobjective multiple sequence alignment in Python. Bioinformatics, 2020, 36, 3892-3893.	4.1	3
86	Evolving a Multi-objective Optimization Framework. Springer Tracts in Nature-inspired Computing, 2021, , 175-198.	0.7	3
87	A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking. Lecture Notes in Computer Science, 2016, , 40-52.	1.3	2
88	About Designing an Observer Pattern-Based Architecture for a Multi-objective Metaheuristic Optimization Framework. Studies in Computational Intelligence, 2018, , 50-60.	0.9	2
89	A multi-objective interactive dynamic particle swarm optimizer. Progress in Artificial Intelligence, 2020, 9, 55-65.	2.4	2
90	A Scatter Search Approach for Solving the Automatic Cell Planning Problem. Lecture Notes in Computer Science, 2010, , 334-342.	1.3	2

#	Article	IF	CITATIONS
91	Integrating an entry consistency memory model and concurrent object-oriented programming. Lecture Notes in Computer Science, 1997, , 567-571.	1.3	1
92	New Technologies in Parallelism. , 2005, , 63-78.		1
93	Applying Evolutionary Algorithms to Solve the Automatic Frequency Planning Problem. , 0, , 271-286.		1
94	Decision Making in Industry 4.0 Scenarios Supported by Imbalanced DataÂClassification. Studies in Computational Intelligence, 2018, , 121-134.	0.9	1
95	.NET as a Platform for Implementing Concurrent Objects. Lecture Notes in Computer Science, 2002, , 125-129.	1.3	1
96	Evaluating a Multithreaded Runtime System for Concurrent Object-Oriented Languages. Lecture Notes in Computer Science, 1998, , 167-174.	1.3	1
97	Applying Distributed Shared Memory Techniques for Implementing Distributed Objects. Lecture Notes in Computer Science, 1998, , 499-506.	1.3	0
98	DNA Fragment Assembly Using Grid Systems. , 0, , 357-374.		0
99	Multi-objective Optimization of a Two-stage Membrane Process with Metaheuristics. Procedia Engineering, 2012, 44, 2056-2058.	1.2	0
100	Solving a Real-World Structural Optimization Problem with a Distributed SMS-EMOA Algorithm. , 2013, , .		0
101	Multi-objective Metaheuristics for a Flexible Ligand-Macromolecule Docking Problem in Computational Biology. Studies in Computational Intelligence, 2018, , 369-379.	0.9	0
102	Optimizing ligand conformations in flexible protein targets: a multi-objective strategy. Soft Computing, 2020, 24, 10705-10719.	3.6	0
103	Search Intensification in Metaheuristics for Solving the Automatic Frequency Problem in GSM. Studies in Computational Intelligence, 2008, , 151-166.	0.9	0
104	MORPHY: A Multiobjective Software Tool for Phylogenetic Inference of Protein Coded Sequences. Advances in Intelligent Systems and Computing, 2018, , 719-731.	0.6	0