
Anshuman Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2774592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonic Cavity Coupling. ACS Photonics, 2018, 5, 43-53.	6.6	176
2	Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nature Physics, 2019, 15, 373-381.	16.7	148
3	Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nature Photonics, 2019, 13, 593-601.	31.4	82
4	Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 2019, 6, 563.	9.3	55
5	Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si ₃ N ₄ Quantum Photonic Circuits. Nano Letters, 2019, 19, 7164-7172.	9.1	53
6	Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica, 2019, 6, 1535.	9.3	44
7	Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront [Invited]. Optical Materials Express, 2011, 1, 633.	3.0	34
8	Vectorial Nanoscale Mapping of Optical Antenna Fields by Single Molecule Dipoles. Nano Letters, 2014, 14, 4715-4723.	9.1	34
9	Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Nano Letters, 2018, 18, 2538-2544.	9.1	33
10	Fiber-Based Optical Nanoantennas for Single-Molecule Imaging and Sensing. Journal of Lightwave Technology, 2015, 33, 2371-2377.	4.6	12
11	Tunable Quantum Beat of Single Photons Enabled by Nonlinear Nanophotonics. Physical Review Applied, 2019, 12, .	3.8	8
12	Far-Field Control of Nanoscale Hotspots by Near-Field Interference. ACS Photonics, 2020, 7, 2381-2389.	6.6	4
13	InAs/InAsSb Avalanche Photodiode (APD) for applicaions in long-wavelength infrared region. Optoelectronics Letters, 2008, 4, 342-346.	0.8	1
14	Tunable quantum beat of single photons enabled by nonlinear nanophotonics. Physical Review Applied, 2019, 12, .	3.8	1
15	Tailored fiber Bragg gratings inscribed with a phase mask and a deformed wave front by ultrashort pulses. Proceedings of SPIE, 2012, , .	0.8	0
16	Nanoantenna probes: Mode mapping and nanoscale imaging. , 2013, , .		0
17	Sub-mW optical parametric oscillation across visible and telecommunications bands using silicon nanophotonics. , 2019, , .		0
18	Efficient widely-separated optical parametric oscillation. , 2020, , .		0

Efficient widely-separated optical parametric oscillation., 2020,,. 18

#	Article	IF	CITATIONS
19	Heterogeneous integrated silicon photonic circuits with deterministically fabricated single quantum dot single-photon sources. , 2020, , .		0