Terry Magnuson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2774400/publications.pdf

Version: 2024-02-01

139 papers 14,884 citations

59 h-index 118 g-index

147 all docs

147 docs citations

times ranked

147

16714 citing authors

#	Article	IF	CITATIONS
1	The Mutant Mouse Resource and Research Center (MMRRC): the NIH-supported National Public Repository and Distribution Archive of Mutant Mouse Models in the USA. Mammalian Genome, 2022, 33, 203-212.	2.2	13
2	INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development (Cambridge), 2022, 149, .	2.5	11
3	RBBP4 dysfunction reshapes the genomic landscape of H3K27 methylation and acetylation and disrupts gene expression. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
4	UTX promotes CD8+ TÂcell-mediated antiviral defenses but reduces TÂcell durability. Cell Reports, 2021, 35, 108966.	6.4	9
5	Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males. Nature Communications, 2021, 12, 6581.	12.8	9
6	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	2.9	58
7	The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development (Cambridge), 2020, 147, .	2.5	28
8	HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO Journal, 2020, 39, e102808.	7.8	44
9	IncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Molecular Cell, 2019, 75, 523-537.e10.	9.7	92
10	Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germ line transcription in the mouse. Development (Cambridge), 2019 , 146 , .	2.5	29
11	A Statistical Method for Joint Estimation of <i>Cis</i> -eQTLs and Parent-of-Origin Effects Under Family Trio Design. Biometrics, 2019, 75, 864-874.	1.4	3
12	Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics, 2019, 213, 1093-1110.	2.9	24
13	SWI/SNF remains localized to chromatin in the presence of SCHLAP1. Nature Genetics, 2019, 51, 26-29.	21.4	28
14	Identification of Two Distinct Classes of the Human INO80 Complex Genome-Wide. G3: Genes, Genomes, Genetics, 2018, 8, 1095-1102.	1.8	21
15	The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons. Molecular and Cellular Neurosciences, 2018, 87, 4-17.	2.2	32
16	Interactome determination of a Long Noncoding RNA implicated in Embryonic Stem Cell Self-Renewal. Scientific Reports, 2018, 8, 17568.	3.3	14
17	EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics and Chromatin, 2018, 11, 71.	3.9	28
18	Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Molecular Cell, 2018, 70, 1054-1066.e4.	9.7	38

#	Article	lF	CITATIONS
19	EZH1 in germ cells safeguards the function of PRC2 during spermatogenesis. Developmental Biology, 2017, 424, 198-207.	2.0	38
20	Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 108-121.	4.8	47
21	UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9046-E9055.	7.1	67
22	Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits. Epigenetics and Chromatin, 2017, 10, 62.	3.9	37
23	Detecting broad domains and narrow peaks in ChIP-seq data with hiddenDomains. BMC Bioinformatics, 2016, 17, 144.	2.6	30
24	Epigenetic Regulation by ATP-Dependent Chromatin-Remodeling Enzymes. Current Topics in Developmental Biology, 2016, 117, 1-13.	2.2	13
25	Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway <i>in vivo</i> . Nucleic Acids Research, 2016, 44, 4174-4188.	14.5	13
26	The SWI/SNF BAF-A complex is essential for neural crest development. Developmental Biology, 2016, 411, 15-24.	2.0	39
27	The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis1. Biology of Reproduction, 2016, 94, 8.	2.7	35
28	Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling. Genomics Data, 2015, 5, 329-332.	1.3	4
29	Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes. PLoS Genetics, 2015, 11, e1005748.	3.5	102
30	Reproducibility: Use mouse biobanks or lose them. Nature, 2015, 522, 151-153.	27.8	24
31	Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nature Communications, 2015, 6, 6118.	12.8	247
32	Histone H3.3 maintains genome integrity during mammalian development. Genes and Development, 2015, 29, 1377-1392.	5.9	163
33	Systematic Discovery of Xist RNA Binding Proteins. Cell, 2015, 161, 404-416.	28.9	886
34	T Follicular Helper Cell-Dependent Clearance of a Persistent Virus Infection Requires T Cell Expression of the Histone Demethylase UTX. Immunity, 2015, 43, 703-714.	14.3	76
35	A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells. G3: Genes, Genomes, Genetics, 2015, 5, 751-759.	1.8	28
36	Key mediators of somatic ATR signaling localize to unpaired chromosomes in spermatocytes. Development (Cambridge), 2015, 142, 2972-80.	2.5	16

3

#	Article	IF	Citations
37	KDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development. PLoS Genetics, 2014, 10, e1004507.	3.5	100
38	Characterization of a Brg $1 \text{\^{A}}$ hypomorphic allele demonstrates that genetic and biochemical activity are tightly correlated. Epigenetics, 2014, 9, 249-256.	2.7	1
39	fourSig: a method for determining chromosomal interactions in 4C-Seq data. Nucleic Acids Research, 2014, 42, e68-e68.	14.5	42
40	Small RNA Expression from the Human Macrosatellite DXZ4. G3: Genes, Genomes, Genetics, 2014, 4, 1981-1989.	1.8	9
41	Evidence for Local Regulatory Control of Escape from Imprinted X Chromosome Inactivation. Genetics, 2014, 197, 715-723.	2.9	21
42	Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development. Genes and Development, 2014, 28, 2056-2069.	5.9	94
43	Topoisomerases facilitate transcription of long genes linked to autism. Nature, 2013, 501, 58-62.	27.8	360
44	We screen newborns, don't we?: realizing the promise of public health genomics. Genetics in Medicine, 2013, 15, 332-334.	2.4	64
45	ARID1a-DNA Interactions Are Required for Promoter Occupancy by SWI/SNF. Molecular and Cellular Biology, 2013, 33, 265-280.	2.3	97
46	A Novel Selection Marker for Efficient DNA Cloning and Recombineering in E. coli. PLoS ONE, 2013, 8, e57075.	2.5	16
47	Differentiation-Driven Nucleolar Association of the Mouse Imprinted <i>Kcnq1</i> Locus. G3: Genes, Genomes, Genetics, 2012, 2, 1521-1528.	1.8	24
48	Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals. PLoS Genetics, 2012, 8, e1002468.	3.5	40
49	Genomic Imprinting and Epigenetic Control of Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008136-a008136.	5.5	42
50	UTX and UTY Demonstrate Histone Demethylase-Independent Function in Mouse Embryonic Development. PLoS Genetics, 2012, 8, e1002964.	3.5	253
51	An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis. Development (Cambridge), 2012, 139, 1133-1140.	2.5	52
52	Site-Specific Silencing of Regulatory Elements as a Mechanism of X Inactivation. Cell, 2012, 151, 951-963.	28.9	176
53	Centralized mouse repositories. Mammalian Genome, 2012, 23, 559-571.	2,2	25
54	Failure of extra-embryonic progenitor maintenance in the absence of dosage compensation. Development (Cambridge), 2012, 139, 2130-2138.	2.5	25

#	Article	IF	CITATIONS
55	The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2282-2287.	7.1	98
56	Nodal Signaling Regulates the Bone Morphogenic Protein Pluripotency Pathway in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2010, 285, 19747-19756.	3.4	54
57	Aurora-A Kinase Is Essential for Bipolar Spindle Formation and Early Development. Molecular and Cellular Biology, 2009, 29, 1059-1071.	2.3	113
58	Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature, 2009, 460, 647-651.	27.8	126
59	Polycomb Repressive Complex 2 Is Dispensable for Maintenance of Embryonic Stem Cell Pluripotency. Stem Cells, 2008, 26, 1496-1505.	3.2	310
60	A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. EMBO Journal, 2008, 27, 2523-2532.	7.8	75
61	The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development. Development (Cambridge), 2008, 135, 493-500.	2.5	112
62	Differences between homologous alleles of olfactory receptor genes require the Polycomb Group protein Eed. Journal of Cell Biology, 2007, 179, 269-276.	5.2	33
63	The 2007 Thomas Hunt Morgan Medal. Genetics, 2007, 175, 459-462.	2.9	0
64	Drosophila CTCF Is Required for Fab-8 Enhancer Blocking Activity in S2 Cells. Journal of Molecular Biology, 2007, 373, 233-239.	4.2	15
65	Molecular and Functional Mapping of EED Motifs Required for PRC2-Dependent Histone Methylation. Journal of Molecular Biology, 2007, 374, 1145-1157.	4.2	40
66	A simple enzymatic method for parietal yolk sac removal in early postimplantation mouse embryos. Developmental Dynamics, 2007, 236, 489-493.	1.8	8
67	A role for BRG1 in vascular development. FASEB Journal, 2007, 21, A15.	0.5	0
68	The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nature Cell Biology, 2006, 8, 195-202.	10.3	134
69	A novel mouse Smad4 mutation reduces protein stability and wild-type protein levels. Mammalian Genome, 2006, 17, 211-219.	2.2	10
70	The Polycomb Group Protein EED Is Dispensable for the Initiation of Random X-Chromosome Inactivation. PLoS Genetics, 2006, 2, e66.	3.5	106
71	Large-Scale Gene Expression Differences Across Brain Regions and Inbred Strains Correlate With a Behavioral Phenotype. Genetics, 2006, 174, 1229-1236.	2.9	86
72	Maternal BRG1 regulates zygotic genome activation in the mouse. Genes and Development, 2006, 20, 1744-1754.	5.9	293

#	Article	IF	CITATIONS
73	Juxtaposed Polycomb complexes co-regulate vertebral identity. Development (Cambridge), 2006, 133, 4957-4968.	2.5	43
74	A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9958-9963.	7.1	40
75	The Murine Polycomb Group Protein Eed Is Required for Global Histone H3 Lysine-27 Methylation. Current Biology, 2005, 15, 942-947.	3.9	319
76	A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in Â-globin expression and erythroid development. Genes and Development, 2005, 19, 2849-2861.	5.9	148
77	Ablation of MEKK4 Kinase Activity Causes Neurulation and Skeletal Patterning Defects in the Mouse Embryo. Molecular and Cellular Biology, 2005, 25, 8948-8959.	2.3	63
78	Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15173-15177.	7.1	71
79	Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Developmental Biology, 2005, 288, 363-371.	2.0	247
80	Genetic and Haplotype Diversity Among Wild-Derived Mouse Inbred Strains. Genome Research, 2004, 14, 1880-1887.	5 . 5	90
81	The Knockout Mouse Project. Nature Genetics, 2004, 36, 921-924.	21.4	556
82	Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genetics, 2003, 33, 502-507.	21.4	235
83	Dynamic morphogenetic events characterize the mouse visceral endoderm. Developmental Biology, 2003, 261, 470-487.	2.0	108
84	The Role of Brg1, a Catalytic Subunit of Mammalian Chromatin-remodeling Complexes, in T Cell Development. Journal of Experimental Medicine, 2003, 198, 1937-1949.	8.5	125
85	Gene-Based Chemical Mutagenesis in Mouse Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 406-415.	1.0	8
86	Nonlinear partial differential equations and applications: An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N- nitrosourea-mutagenized mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15542-15547.	7.1	69
87	The mouse PcG gene eed is required for Hox gene repression and extraembryonic development. Mammalian Genome, 2002, 13, 493-503.	2.2	81
88	The Polycomb-group gene eed regulates thymocyte differentiation and suppresses the development of carcinogen-induced T-cell lymphomas. Oncogene, 2002, 21, 299-306.	5.9	42
89	Cell and tissue requirements for the geneeed during mouse gastrulation and organogenesis. Genesis, 2001, 31, 142-146.	1.6	55
90	Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genetics, 2001, 28, 371-375.	21.4	307

#	Article	IF	Citations
91	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	12.6	125
92	Mouse homolog of the Drosophila Pc-G geneesc exerts a dominant negative effect in Drosophila. Genesis, 2000, 26, 67-76.	1.6	4
93	Pc-G/trx-G and the SWI/SNF connection: Developmental gene regulation through chromatin remodeling. Genesis, 2000, 26, 189-197.	1.6	34
94	Genetic analysis of theexed region in mouse. Genesis, 2000, 27, 174-179.	1.6	0
95	Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nature Genetics, 2000, 24, 296-299.	21.4	268
96	Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nature Genetics, 2000, 24, 314-317.	21.4	156
97	Molecular and genetic analysis of the mouse homolog of the Drosophila suppressor of position-effect variegation 3-9 gene. Mammalian Genome, 2000, 11, 251-254.	2.2	7
98	Toward the yeastification of mouse genetics: chemical mutagenesis of embryonic stem cells. Mammalian Genome, 2000, 11, 598-602.	2.2	23
99	A Brg1 Null Mutation in the Mouse Reveals Functional Differences among Mammalian SWI/SNF Complexes. Molecular Cell, 2000, 6, 1287-1295.	9.7	743
100	The MurinePolycomb-Group Geneeedand Its Human Orthologue: Functional Implications of Evolutionary Conservation. Genomics, 1998, 54, 79-88.	2.9	44
101	Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican. Journal of Cell Biology, 1998, 141, 1277-1286.	5.2	697
102	Interaction of Mouse Polycomb-Group (Pc-G) Proteins Enx1 and Enx2 with Eed: Indication for Separate Pc-G Complexes. Molecular and Cellular Biology, 1998, 18, 3572-3579.	2.3	126
103	NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. NeuroReport, 1998, 9, 461-466.	1.2	98
104	Role of Neural Cell Adhesion Molecule and Polysialic Acid in Mouse Circadian Clock Function. Journal of Neuroscience, 1997, 17, 5221-5229.	3.6	108
105	Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends in Genetics, 1997, 13, 167-170.	6.7	150
106	Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mammalian Genome, 1997, 8, 390-393.	2,2	201
107	SSLPs to map genetic differences between the 129 inbred strains and closed-colony, random-bred CD-l mice. Mammalian Genome, 1997, 8, 441-442.	2.2	18
108	The Role of Polysialic Acid in Migration of Olfactory Bulb Interneuron Precursors in the Subventricular Zone. Neuron, 1996, 16, 735-743.	8.1	352

#	Article	IF	CITATIONS
109	Positional cloning of a global regulator of anterior–posterior patterning in mice. Nature, 1996, 383, 250-253.	27.8	231
110	Activation of the Epidermal Growth Factor Receptor Signal Transduction Pathway Stimulates Tyrosine Phosphorylation of Protein Kinase C δ. Journal of Biological Chemistry, 1996, 271, 5325-5331.	3.4	180
111	Targeted Mutagenesis of a Candidate <i>t</i> Complex Responder Gene in Mouse <i>t</i> Haplotypes Does Not Eliminate Transmission Ratio Distortion. Genetics, 1996, 144, 785-792.	2.9	17
112	Vertebrate gastrulation and axial patterning: Editorial overview, Part 1. Genesis, 1995, 17, 1-5.	2.1	0
113	Vertebrate gastrulation and axial patterning: Editorial overview, Part 2. Genesis, 1995, 17, 103-106.	2.1	0
114	Expression of rabbit Câ€reactive protein in transgenic mice. Immunology and Cell Biology, 1995, 73, 521-531.	2.3	23
115	Targeted Disruption of Mouse EGF receptor: Effect of Genetic Background on Mutant Phenotype. Science, 1995, 269, 230-234.	12.6	1,349
116	Is There aBrachyury the Second?Analysis of a Transgenic Mutation Involved in Notochord Maintenance in Mice. Developmental Biology, 1995, 172, 206-217.	2.0	23
117	Physical Localization of eed: A Region of Mouse Chromosome 7 Required for Gastrulation. Genomics, 1995, 27, 447-456.	2.9	19
118	A mouse model for human hereditary tyrosinemia I. BioEssays, 1994, 16, 85-87.	2.5	4
119	N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron, 1994, 13, 595-609.	8.1	397
120	Comparative Embryonic Cytotoxicity of Antiretroviral Nucleosides. Journal of Infectious Diseases, 1994, 169, 1100-1102.	4.0	24
121	Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron, 1993, 11, 1163-1174.	8.1	466
122	Genetic control of gastrulation in the mouse. Current Opinion in Genetics and Development, 1993, 3, 491-498.	3.3	30
123	Chromosome jumping from flanking markers defines the minimal region for alf/hsdr-1 within the albino-deletion complex. Genomics, 1992, 14, 288-297.	2.9	18
124	Physical mapping of the albino-deletion complex in the mouse to localize alf/hsdr-1, a locus required for neonatal survival. Genomics, 1992, 14, 275-287.	2.9	36
125	Genomic mapping within the albino-deletion complex using individual early postimplantation mouse embryos. Mammalian Genome, 1992, 3, 79-83.	2.2	5
126	Mouse Chromosome 7. Mammalian Genome, 1992, 3, S104-S120.	2.2	28

#	Article	IF	CITATIONS
127	Mouse albino-deletions: From genetics to genes in development. BioEssays, 1992, 14, 831-839.	2.5	44
128	Molecular mapping of albino deletions associated with early embryonic lethality in the mouse. Genomics, 1991, 9, 162-169.	2.9	36
129	A Rapid Procedure to Identify Newborn Transgenic Mice. DNA and Cell Biology, 1989, 8, 297-299.	5.2	25
130	Spindle-pole organization during early mouse development. Developmental Biology, 1989, 133, 24-36.	2.0	41
131	Short-term rescue by RNA injection of a mitotic arrest mutation that affects the preimplantation mouse embryo. Developmental Biology, 1987, 122, 256-261.	2.0	6
132	Oligosyndactyly: A lethal mutation in the mouse that results in mitotic arrest very early in development. Cell, 1984, 38, 823-833.	28.9	78
133	Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature, 1982, 298, 750-753.	27.8	70
134	GENETIC CONTROL OF VERY EARLY MAMMALIAN DEVELOPMENT. Biological Reviews, 1981, 56, 369-408.	10.4	85
135	Characterization of concanavalin A precipitated proteins from early mouse embryos: A 2-dimensional gel electrophoresis study. Developmental Biology, 1981, 81, 193-199.	2.0	36
136	Evidence for expression of the paternal genome in the two-cell mouse embryo. Nature, 1981, 294, 450-451.	27.8	144
137	Relationship between intercellular permeability and junction organization in the preimplantation mouse embryo. Developmental Biology, 1978, 67, 214-224.	2.0	74
138	Properties of rat liver plasma membrane adenylate cyclase after chromatography on O-diethylaminoethyl-cellulose and agarose-hexane-GTP. Archives of Biochemistry and Biophysics, 1977, 179, 157-165.	3.0	25
139	Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Developmental Biology, 1977, 61, 252-261.	2.0	129