
Lorena Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2773918/publications.pdf Version: 2024-02-01

LODENIA WILSON

#	Article	IF	CITATIONS
1	Enzyme Biocatalysis and Sustainability. , 2021, , 383-413.		5
2	ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD+. ACS Applied Materials & Interfaces, 2021, 13, 10719-10727.	8.0	10
3	Encapsulation of Combi-CLEAs of Glycosidases in Alginate Beads and Polyvinyl Alcohol for Wine Aroma Enhancement. Catalysts, 2021, 11, 866.	3.5	4
4	Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of Î ² -Galactosidase. Molecules, 2021, 26, 4152.	3.8	5
5	Catalyst Replacement Policy on Multienzymatic Systems: Theoretical Study in the One-Pot Sequential Batch Production of Lactofructose Syrup. Catalysts, 2021, 11, 1167.	3.5	3
6	Co-Immobilized Carrier-Free Enzymes For Lactose Upgrading. Current Opinion in Green and Sustainable Chemistry, 2021, , 100553.	5.9	7
7	Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. International Journal of Biological Macromolecules, 2020, 154, 1082-1090.	7.5	33
8	Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 595-621.	11.7	36
9	Parameters for the Evaluation of Immobilized Enzymes Under Process Conditions. Methods in Molecular Biology, 2020, 2100, 65-81.	0.9	14
10	Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate. Molecules, 2019, 24, 3227.	3.8	20
11	Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 2019, 288, 102-107.	8.2	38
12	Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. International Journal of Biological Macromolecules, 2018, 116, 182-193.	7.5	60
13	Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts. Food Chemistry, 2018, 239, 189-195.	8.2	50
14	Enhanced long-chain fatty alcohol oxidation by immobilization of alcohol dehydrogenase from S. cerevisiae. Applied Microbiology and Biotechnology, 2018, 102, 237-247.	3.6	15
15	Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. International Journal of Biological Macromolecules, 2018, 108, 674-686.	7.5	61
16	Bio-inspired silica lipase nanobiocatalysts for the synthesis of fatty acid methyl esters. Process Biochemistry, 2018, 74, 86-93.	3.7	23
17	Co-immobilized β-galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides. Enzyme and Microbial Technology, 2018, 118, 102-108.	3.2	15
18	Chapter 16 Technical Biocatalysis RSC Catalysis Series 2018 473-515	0.1	9

2

#	Article	IF	CITATIONS
19	Synthesis of butyl-β- d -galactoside with commercial β-galactosidases. Food and Bioproducts Processing, 2017, 103, 66-75.	3.6	11
20	Synthesis of propyl-β-d-galactoside with free and immobilized β-galactosidase from Aspergillus oryzae. Process Biochemistry, 2017, 53, 162-171.	3.7	14
21	Effect of enzyme load and catalyst particle size on the diffusional restrictions in reactions of synthesis and hydrolysis catalyzed by α-chymotrypsin immobilized into glyoxal-agarose. Process Biochemistry, 2017, 53, 172-179.	3.7	23
22	Mathematical determination of kinetic parameters for assessing the effect of theÂorganic solvent on the selectivity of peptide synthesis with immobilized α-chymotrypsin. Journal of Bioscience and Bioengineering, 2017, 124, 618-622.	2.2	2
23	Optimization of reaction conditions and the donor substrate in the synthesis of hexyl-β- d -galactoside. Process Biochemistry, 2017, 58, 128-136.	3.7	11
24	Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates. Molecules, 2016, 21, 1485.	3.8	25
25	In situ immobilization of βâ€galactosidase from <i>Bacillus circulans</i> in silica by solâ€gel process: Application in prebiotic synthesis. Engineering in Life Sciences, 2016, 16, 396-404.	3.6	14
26	Synthesis of the kyotorphin precursor benzoyl-L-tyrosine-L-argininamide with immobilized α-chymotrypsin in sequential batch with enzyme reactivation. Biotechnology Progress, 2016, 32, 54-59.	2.6	5
27	Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. LWT - Food Science and Technology, 2016, 72, 81-89.	5.2	16
28	Enzymatic Production of Galacto-Oligosaccharides. , 2016, , 111-189.		4
29	Immobilization of Alcaligenes sp. lipase as catalyst for the transesterification of vegetable oils to produce biodiesel. Catalysis Today, 2016, 259, 177-182.	4.4	26
30	Lipase Immobilization on Siliceous Supports: Application to Synthetic Reactions. Current Organic Chemistry, 2016, 21, 96-103.	1.6	16
31	Asymmetric hydrolysis of dimethyl-3-phenylglutarate in sequential batch reactor operation catalyzed by immobilized Geobacillus thermocatenulatus lipase. Catalysis Today, 2015, 255, 21-26.	4.4	34
32	Selectivity of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica lipase B immobilized on heterofunctional supports. Process Biochemistry, 2015, 50, 1870-1877.	3.7	48
33	Improvement of Efficiency in the Enzymatic Synthesis of Lactulose Palmitate. Journal of Agricultural and Food Chemistry, 2015, 63, 3716-3724.	5.2	37
34	Production of combi-CLEAs of glycosidases utilized for aroma enhancement in wine. Food and Bioproducts Processing, 2015, 94, 555-560.	3.6	25
35	Heterofunctional Hydrophilic–Hydrophobic Porous Silica as Support for Multipoint Covalent Immobilization of Lipases: Application to Lactulose Palmitate Synthesis. Langmuir, 2014, 30, 3557-3566.	3.5	114
36	Synthesis of Ascorbyl Palmitate with Immobilized Lipase from <i>Pseudomonas stutzeri</i> . JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 405-410.	1.9	9

#	Article	IF	CITATIONS
37	Carbonaceous–siliceous composite materials as immobilization support for lipase from Alcaligenes sp.: Application to the synthesis of antioxidants. Carbon, 2014, 74, 96-103.	10.3	12
38	Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. Journal of Applied Polymer Science, 2014, 131, .	2.6	17
39	Improvement of Chitosan Derivatization for the Immobilization of <i>Bacillus circulans</i> β-Galactosidase and Its Further Application in Galacto-oligosaccharide Synthesis. Journal of Agricultural and Food Chemistry, 2014, 62, 10126-10135.	5.2	26
40	Evaluation of kinetic parameters of immobilized penicillin G acylase subject to an inactivation and reactivation process. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 70-74.	1.8	7
41	Hierarchical meso-macroporous silica grafted with glyoxyl groups: opportunities for covalent immobilization of enzymes. New Biotechnology, 2013, 30, 500-506.	4.4	41
42	Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 2013, 77, 41-48.	3.6	65
43	Detailed Analysis of Galactooligosaccharides Synthesis with β-Galactosidase from <i>Aspergillus oryzae</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 1081-1087.	5.2	108
44	Enzyme Reactor Design and Operation under Mass-Transfer Limitations. , 2013, , 181-202.		1
45	Mathematical Methods. , 2013, , 277-310.		0
46	Effect of inactivation and reactivation conditions on activity recovery of enzyme catalysts. Electronic Journal of Biotechnology, 2013, 16, .	2.2	4
47	Comparative study of the enzymatic synthesis of cephalexin at high substrate concentration in aqueous and organic media using statistical model. Biotechnology and Bioprocess Engineering, 2012, 17, 711-721.	2.6	9
48	Recent trends in biocatalysis engineering. Bioresource Technology, 2012, 115, 48-57.	9.6	227
49	Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme–support attachment and enzyme load. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 224-229.	1.8	35
50	Influence of different immobilization techniques for Candida cylindracea lipase on its stability and fish oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 111-118.	1.8	56
51	Batch reactor performance for the enzymatic synthesis of cephalexin: influence of catalyst enzyme loading and particle size. New Biotechnology, 2012, 29, 218-226.	4.4	19
52	Reactivation of immobilized penicillin G acylase: Influence of cosolvents and catalytic modulators. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 77-82.	1.8	11
53	Effect of Internal Diffusional Restrictions on the Hydrolysis of Penicillin G: Reactor Performance and Specific Productivity of 6-APA with Immobilized Penicillin Acylase. Applied Biochemistry and Biotechnology, 2011, 165, 426-441.	2.9	14
54	Cross‣inking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil Catalyzed by RML. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 801-807.	1.9	46

#	Article	IF	CITATIONS
55	Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochemistry, 2011, 46, 245-252.	3.7	107
56	Evaluation of the incidence of diffusional restrictions on the enzymatic reactions of hydrolysis of penicillin G and synthesis of cephalexin. Enzyme and Microbial Technology, 2010, 47, 268-276.	3.2	28
57	Effect of particle size distribution on the simulation of immobilized enzyme reactor performance. Biochemical Engineering Journal, 2010, 49, 256-263.	3.6	19
58	Diffusional restrictions in glyoxyl-agarose immobilized penicillin G acylase of different particle size and protein loading. Electronic Journal of Biotechnology, 2010, 13, .	2.2	20
59	Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of l²â€łactam antibiotics. Biotechnology and Bioengineering, 2009, 103, 472-479.	3.3	20
60	Synthesis of Cephalexin in Aqueous Medium with Carrier-bound and Carrier-free Penicillin Acylase Biocatalysts. Applied Biochemistry and Biotechnology, 2009, 157, 98-110.	2.9	21
61	Effect of chain length on the activity of free and immobilized alcohol dehydrogenase towards aliphatic alcohols. Enzyme and Microbial Technology, 2009, 44, 135-138.	3.2	19
62	Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase. Process Biochemistry, 2009, 44, 322-326.	3.7	39
63	Reactivation of covalently immobilized lipase from Thermomyces lanuginosus. Process Biochemistry, 2009, 44, 641-646.	3.7	35
64	Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of β-lactam compounds in organic medium. Enzyme and Microbial Technology, 2008, 43, 442-447.	3.2	14
65	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
66	Homogeneous Enzyme Kinetics. , 2008, , 107-153.		12
67	Heterogeneous Enzyme Kinetics. , 2008, , 155-203.		14
68	Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450. Enzyme and Microbial Technology, 2007, 40, 195-203.	3.2	58
69	Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 2007, 40, 540-546.	3.2	65
70	Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 72-78.	1.8	30
71	Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 2006, 125, 85-94.	3.8	86
72	Stabilization of a Formate Dehydrogenase by Covalent Immobilization on Highly Activated Glyoxyl-Agarose Supports. Biomacromolecules, 2006, 7, 669-673.	5.4	75

#	Article	IF	CITATIONS
73	Immobilization and Stabilization of a Cyclodextrin Glycosyltransferase by Covalent Attachment on Highly Activated Glyoxyl-Agarose Supports. Biotechnology Progress, 2006, 22, 1140-1145.	2.6	38
74	CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 2006, 39, 750-755.	3.2	114
75	Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme and Microbial Technology, 2006, 38, 975-980.	3.2	75
76	Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp Enzyme and Microbial Technology, 2006, 39, 259-264.	3.2	64
77	Crosslinked Penicillin Acylase Aggregates for Synthesis of β-Lactam Antibiotics in Organic Medium. Applied Biochemistry and Biotechnology, 2006, 133, 189-202.	2.9	46
78	Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 2004, 86, 558-562.	3.3	130
79	Cross-Linked Aggregates of Multimeric Enzymes:Â A Simple and Efficient Methodology To Stabilize Their Quaternary Structure. Biomacromolecules, 2004, 5, 814-817.	5.4	95
80	Co-Aggregation of Penicillin G Acylase and Polyionic Polymers:Â An Easy Methodology To Prepare Enzyme Biocatalysts Stable in Organic Media. Biomacromolecules, 2004, 5, 852-857.	5.4	120
81	Synthesis of cephalexin in ethylene glycol with glyoxyl-agarose immobilised penicillin acylase: temperature and pH optimisation. Process Biochemistry, 2003, 39, 111-117.	3.7	28
82	Enzyme Reactor Design Under Thermal Inactivation. Critical Reviews in Biotechnology, 2003, 23, 61-93.	9.0	34
83	Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 295-303.	1.8	62
84	Effect of modulation of enzyme inactivation on temperature optimization for reactor operation with chitin-immobilized lactase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 531-540.	1.8	28
85	Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme and Microbial Technology, 2000, 27, 270-278.	3.2	33
86	Reactor performance under thermal inactivation and temperature optimization with chitin-immobilized lactase. Progress in Biotechnology, 1998, , 27-34.	0.2	4