Lorena Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2773918/publications.pdf

Version: 2024-02-01

86 papers

3,071 citations

33 h-index 53 g-index

94 all docs 94 docs citations

times ranked

94

2568 citing authors

#	Article	IF	Citations
1	Recent trends in biocatalysis engineering. Bioresource Technology, 2012, 115, 48-57.	9.6	227
2	Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 2004, 86, 558-562.	3.3	130
3	Co-Aggregation of Penicillin G Acylase and Polyionic Polymers:Â An Easy Methodology To Prepare Enzyme Biocatalysts Stable in Organic Media. Biomacromolecules, 2004, 5, 852-857.	5.4	120
4	CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 2006, 39, 750-755.	3.2	114
5	Heterofunctional Hydrophilic–Hydrophobic Porous Silica as Support for Multipoint Covalent Immobilization of Lipases: Application to Lactulose Palmitate Synthesis. Langmuir, 2014, 30, 3557-3566.	3.5	114
6	Detailed Analysis of Galactooligosaccharides Synthesis with \hat{l}^2 -Galactosidase from <i>Aspergillus oryzae</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 1081-1087.	5. 2	108
7	Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized \hat{l}^2 -galactosidases from Aspergillus oryzae. Process Biochemistry, 2011, 46, 245-252.	3.7	107
8	Cross-Linked Aggregates of Multimeric Enzymes:Â A Simple and Efficient Methodology To Stabilize Their Quaternary Structure. Biomacromolecules, 2004, 5, 814-817.	5.4	95
9	Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 2006, 125, 85-94.	3.8	86
10	Stabilization of a Formate Dehydrogenase by Covalent Immobilization on Highly Activated Glyoxyl-Agarose Supports. Biomacromolecules, 2006, 7, 669-673.	5.4	75
11	Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme and Microbial Technology, 2006, 38, 975-980.	3.2	75
12	Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 2007, 40, 540-546.	3.2	65
13	Immobilization of Bacillus circulans \hat{l}^2 -galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 2013, 77, 41-48.	3. 6	65
14	Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp Enzyme and Microbial Technology, 2006, 39, 259-264.	3,2	64
15	Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 295-303.	1.8	62
16	Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. International Journal of Biological Macromolecules, 2018, 108, 674-686.	7.5	61
17	Use of chitosan heterofunctionality for enzyme immobilization: \hat{l}^2 -galactosidase immobilization for galacto-oligosaccharide synthesis. International Journal of Biological Macromolecules, 2018, 116, 182-193.	7.5	60
18	Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450. Enzyme and Microbial Technology, 2007, 40, 195-203.	3.2	58

#	Article	IF	Citations
19	Influence of different immobilization techniques for Candida cylindracea lipase on its stability and fish oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 111-118.	1.8	56
20	Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts. Food Chemistry, 2018, 239, 189-195.	8.2	50
21	Selectivity of R-α-monobenzoate glycerol synthesis catalyzed by Candida antarctica lipase B immobilized on heterofunctional supports. Process Biochemistry, 2015, 50, 1870-1877.	3.7	48
22	Crosslinked Penicillin Acylase Aggregates for Synthesis of \hat{l}^2 -Lactam Antibiotics in Organic Medium. Applied Biochemistry and Biotechnology, 2006, 133, 189-202.	2.9	46
23	Crossâ€Linking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil Catalyzed by RML. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 801-807.	1.9	46
24	Hierarchical meso-macroporous silica grafted with glyoxyl groups: opportunities for covalent immobilization of enzymes. New Biotechnology, 2013, 30, 500-506.	4.4	41
25	Effect of the degree of cross-linking on the properties of different CLEAs of penicillin acylase. Process Biochemistry, 2009, 44, 322-326.	3.7	39
26	Immobilization and Stabilization of a Cyclodextrin Glycosyltransferase by Covalent Attachment on Highly Activated Glyoxyl-Agarose Supports. Biotechnology Progress, 2006, 22, 1140-1145.	2.6	38
27	Design of combined crosslinked enzyme aggregates (combi-CLEAs) of \hat{l}^2 -galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chemistry, 2019, 288, 102-107.	8.2	38
28	Improvement of Efficiency in the Enzymatic Synthesis of Lactulose Palmitate. Journal of Agricultural and Food Chemistry, 2015, 63, 3716-3724.	5.2	37
29	Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 595-621.	11.7	36
30	Reactivation of covalently immobilized lipase from Thermomyces lanuginosus. Process Biochemistry, 2009, 44, 641-646.	3.7	35
31	Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme–support attachment and enzyme load. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 224-229.	1.8	35
32	Enzyme Reactor Design Under Thermal Inactivation. Critical Reviews in Biotechnology, 2003, 23, 61-93.	9.0	34
33	Asymmetric hydrolysis of dimethyl-3-phenylglutarate in sequential batch reactor operation catalyzed by immobilized Geobacillus thermocatenulatus lipase. Catalysis Today, 2015, 255, 21-26.	4.4	34
34	Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme and Microbial Technology, 2000, 27, 270-278.	3.2	33
35	Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. International Journal of Biological Macromolecules, 2020, 154, 1082-1090.	7.5	33
36	Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 72-78.	1.8	30

3

#	Article	IF	CITATIONS
37	Effect of modulation of enzyme inactivation on temperature optimization for reactor operation with chitin-immobilized lactase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 531-540.	1.8	28
38	Synthesis of cephalexin in ethylene glycol with glyoxyl-agarose immobilised penicillin acylase: temperature and pH optimisation. Process Biochemistry, 2003, 39, 111-117.	3.7	28
39	Evaluation of the incidence of diffusional restrictions on the enzymatic reactions of hydrolysis of penicillin G and synthesis of cephalexin. Enzyme and Microbial Technology, 2010, 47, 268-276.	3.2	28
40	Improvement of Chitosan Derivatization for the Immobilization of <i>Bacillus circulans</i> β-Galactosidase and Its Further Application in Galacto-oligosaccharide Synthesis. Journal of Agricultural and Food Chemistry, 2014, 62, 10126-10135.	5.2	26
41	Immobilization of Alcaligenes sp. lipase as catalyst for the transesterification of vegetable oils to produce biodiesel. Catalysis Today, 2016, 259, 177-182.	4.4	26
42	Production of combi-CLEAs of glycosidases utilized for aroma enhancement in wine. Food and Bioproducts Processing, 2015, 94, 555-560.	3.6	25
43	Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates. Molecules, 2016, 21, 1485.	3.8	25
44	Effect of enzyme load and catalyst particle size on the diffusional restrictions in reactions of synthesis and hydrolysis catalyzed by \hat{l}_{\pm} -chymotrypsin immobilized into glyoxal-agarose. Process Biochemistry, 2017, 53, 172-179.	3.7	23
45	Bio-inspired silica lipase nanobiocatalysts for the synthesis of fatty acid methyl esters. Process Biochemistry, 2018, 74, 86-93.	3.7	23
46	Synthesis of Cephalexin in Aqueous Medium with Carrier-bound and Carrier-free Penicillin Acylase Biocatalysts. Applied Biochemistry and Biotechnology, 2009, 157, 98-110.	2.9	21
47	Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of Î²â€łactam antibiotics. Biotechnology and Bioengineering, 2009, 103, 472-479.	3.3	20
48	Diffusional restrictions in glyoxyl-agarose immobilized penicillin G acylase of different particle size and protein loading. Electronic Journal of Biotechnology, 2010, 13, .	2.2	20
49	Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate. Molecules, 2019, 24, 3227.	3.8	20
50	Effect of chain length on the activity of free and immobilized alcohol dehydrogenase towards aliphatic alcohols. Enzyme and Microbial Technology, 2009, 44, 135-138.	3.2	19
51	Effect of particle size distribution on the simulation of immobilized enzyme reactor performance. Biochemical Engineering Journal, 2010, 49, 256-263.	3.6	19
52	Batch reactor performance for the enzymatic synthesis of cephalexin: influence of catalyst enzyme loading and particle size. New Biotechnology, 2012, 29, 218-226.	4.4	19
53	Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. Journal of Applied Polymer Science, 2014, 131, .	2.6	17
54	Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. LWT - Food Science and Technology, 2016, 72, 81-89.	5.2	16

#	Article	IF	CITATIONS
55	Lipase Immobilization on Siliceous Supports: Application to Synthetic Reactions. Current Organic Chemistry, 2016, 21, 96-103.	1.6	16
56	Enhanced long-chain fatty alcohol oxidation by immobilization of alcohol dehydrogenase from S. cerevisiae. Applied Microbiology and Biotechnology, 2018, 102, 237-247.	3.6	15
57	Co-immobilized \hat{l}^2 -galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides. Enzyme and Microbial Technology, 2018, 118, 102-108.	3.2	15
58	Carrier-bound and carrier-free penicillin acylase biocatalysts for the thermodynamically controlled synthesis of Î ² -lactam compounds in organic medium. Enzyme and Microbial Technology, 2008, 43, 442-447.	3.2	14
59	Effect of Internal Diffusional Restrictions on the Hydrolysis of Penicillin G: Reactor Performance and Specific Productivity of 6-APA with Immobilized Penicillin Acylase. Applied Biochemistry and Biotechnology, 2011, 165, 426-441.	2.9	14
60	In situ immobilization of βâ€galactosidase from <i>Bacillus circulans</i> in silica by solâ€gel process: Application in prebiotic synthesis. Engineering in Life Sciences, 2016, 16, 396-404.	3.6	14
61	Synthesis of propyl- \hat{l}^2 -d-galactoside with free and immobilized \hat{l}^2 -galactosidase from Aspergillus oryzae. Process Biochemistry, 2017, 53, 162-171.	3.7	14
62	Parameters for the Evaluation of Immobilized Enzymes Under Process Conditions. Methods in Molecular Biology, 2020, 2100, 65-81.	0.9	14
63	Heterogeneous Enzyme Kinetics. , 2008, , 155-203.		14
64	Carbonaceousâ€"siliceous composite materials as immobilization support for lipase from Alcaligenes sp.: Application to the synthesis of antioxidants. Carbon, 2014, 74, 96-103.	10.3	12
65	Homogeneous Enzyme Kinetics. , 2008, , 107-153.		12
66	Reactivation of immobilized penicillin G acylase: Influence of cosolvents and catalytic modulators. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 77-82.	1.8	11
67	Synthesis of butyl- \hat{l}^2 - d -galactoside with commercial \hat{l}^2 -galactosidases. Food and Bioproducts Processing, 2017, 103, 66-75.	3.6	11
68	Optimization of reaction conditions and the donor substrate in the synthesis of hexyl- \hat{l}^2 - d -galactoside. Process Biochemistry, 2017, 58, 128-136.	3.7	11
69	ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD+. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10719-10727.	8.0	10
70	Comparative study of the enzymatic synthesis of cephalexin at high substrate concentration in aqueous and organic media using statistical model. Biotechnology and Bioprocess Engineering, 2012, 17, 711-721.	2.6	9
71	Synthesis of Ascorbyl Palmitate with Immobilized Lipase from <i>Pseudomonas stutzeri</i> JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 405-410.	1.9	9
72	Evaluation of kinetic parameters of immobilized penicillin G acylase subject to an inactivation and reactivation process. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 70-74.	1.8	7

#	Article	IF	CITATIONS
73	Co-Immobilized Carrier-Free Enzymes For Lactose Upgrading. Current Opinion in Green and Sustainable Chemistry, 2021, , 100553.	5.9	7
74	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
75	Synthesis of the kyotorphin precursor benzoyl-L-tyrosine-L-argininamide with immobilized \hat{l}_{\pm} -chymotrypsin in sequential batch with enzyme reactivation. Biotechnology Progress, 2016, 32, 54-59.	2.6	5
76	Enzyme Biocatalysis and Sustainability. , 2021, , 383-413.		5
77	Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of Î ² -Galactosidase. Molecules, 2021, 26, 4152.	3.8	5
78	Reactor performance under thermal inactivation and temperature optimization with chitin-immobilized lactase. Progress in Biotechnology, 1998, , 27-34.	0.2	4
79	Enzymatic Production of Galacto-Oligosaccharides. , 2016, , 111-189.		4
80	Encapsulation of Combi-CLEAs of Glycosidases in Alginate Beads and Polyvinyl Alcohol for Wine Aroma Enhancement. Catalysts, 2021, 11, 866.	3.5	4
81	Effect of inactivation and reactivation conditions on activity recovery of enzyme catalysts. Electronic Journal of Biotechnology, 2013, 16, .	2.2	4
82	Catalyst Replacement Policy on Multienzymatic Systems: Theoretical Study in the One-Pot Sequential Batch Production of Lactofructose Syrup. Catalysts, 2021, 11, 1167.	3.5	3
83	Mathematical determination of kinetic parameters for assessing the effect of theÂorganic solvent on the selectivity of peptide synthesis with immobilized α-chymotrypsin. Journal of Bioscience and Bioengineering, 2017, 124, 618-622.	2.2	2
84	Chapter 16. Technical Biocatalysis. RSC Catalysis Series, 2018, , 473-515.	0.1	2
85	Enzyme Reactor Design and Operation under Mass-Transfer Limitations. , 2013, , 181-202.		1
86	Mathematical Methods. , 2013, , 277-310.		0