Jinfa Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2773909/publications.pdf

Version: 2024-02-01

		687220	610775
25	571	13	24
papers	citations	h-index	g-index
25	25	25	841
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorption of fluorine ion from water by composite nonwovens. Journal of the Textile Institute, 2021, 112, 363-369.	1.0	2
2	Low voltage electric field governs fibrous silk electrogels. Materials and Design, 2021, 199, 109401.	3.3	2
3	Highâ€Temperature Bearable Polysulfonamide/Polyurethane Composite Nanofibers' Membranes for Filtration Application. Macromolecular Materials and Engineering, 2021, 306, 2100081.	1.7	2
4	Electrospun double layer nanofibers mats with superior elasticity and unidirectional water transportation. Smart Materials and Structures, 2021, 30, 085023.	1.8	0
5	Influence of fluorescent dyes for dyeing of regenerated cellulose fabric. Textile Reseach Journal, 2020, 90, 1385-1395.	1.1	8
6	Fabrication of Silk Fibroin Fluorescent Nanofibers via Electrospinning. Polymers, 2019, 11, 986.	2.0	30
7	Adsorption of Fluoride Ions from Water by SF/PP Nonwoven Fabrics. Fibers and Polymers, 2019, 20, 863-867.	1.1	4
8	Multifunctional Cocoon Silk Prepared by Plasma Treatment. Journal of Textile Engineering $\&$ Fashion Technology, 2017, 3, .	0.1	1
9	Identification of Dry and Fresh Cocoon Silk. Journal of Textile Engineering & Fashion Technology, 2017, 2, .	0.1	2
10	Novel two-step method to form silk fibroin fibrous hydrogel. Materials Science and Engineering C, 2016, 59, 185-192.	3.8	41
11	Influence factors analysis on the formation of silk I structure. International Journal of Biological Macromolecules, 2015, 75, 398-401.	3.6	37
12	Structure and properties of protein-based fibrous hydrogels derived from silk fibroin and sodium alginate. Journal of Sol-Gel Science and Technology, 2015, 74, 774-782.	1.1	10
13	Rapid formation of flexible silk fibroin gelâ€like films. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
14	Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth. Materials Science and Engineering C, 2015, 51, 287-293.	3.8	34
15	Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel. Journal of Crystal Growth, 2014, 386, 154-161.	0.7	26
16	Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method. Materials Science and Engineering C, 2014, 37, 48-53.	3.8	33
17	Silk dissolution and regeneration at the nanofibril scale. Journal of Materials Chemistry B, 2014, 2, 3879.	2.9	98
18	Novel hydroxyapatite nanorods crystal growth in silk fibroin/sodium alginate nanofiber hydrogel. Materials Letters, 2014, 126, 169-173.	1.3	15

#	Article	IF	CITATION
19	A novel route to prepare dry-spun silk fibers from CaCl2–formic acid solution. Materials Letters, 2014, 128, 175-178.	1.3	52
20	A novel silk fibroin/sodium alginate hybrid scaffolds. Polymer Engineering and Science, 2014, 54, 129-136.	1.5	34
21	A modified grey verhulst model method to predict ultraviolet protection performance of aging B.mori silk fabric. Fibers and Polymers, 2013, 14, 1179-1183.	1.1	6
22	A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers. Materials Chemistry and Physics, 2012, 137, 421-427.	2.0	53
23	Silk I structure formation through silk fibroin selfâ€essembly. Journal of Applied Polymer Science, 2012, 125, 2148-2154.	1.3	31
24	EDC/NHS crosslinked electrospun regenerated tussah silk fibroin nanofiber mats. Fibers and Polymers, 2012, 13, 613-617.	1.1	33
25	Prediction of mechanical properties of aging B.mori silk fabric based on grey neural network model. Fibers and Polymers, 2012, 13, 653-657.	1.1	6