R I Sujith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2773851/publications.pdf

Version: 2024-02-01

1			81743	110170
	207	5,584	39	64
	papers	citations	h-index	g-index
	223	223	223	1284
	all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Detailed Measurement of Oxidizer-Rich Staged Combustion Injector Dynamics in Model Rocket Combustors. AIAA Journal, 2022, 60, 1211-1226.	1.5	2
2	Neural ODE to model and prognose thermoacoustic instability. Chaos, 2022, 32, 013131.	1.0	6
3	Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks. Physics of Fluids, 2022, 34, .	1.6	9
4	Anticipating synchrony in dynamical systems using information theory. Chaos, 2022, 32, 031103.	1.0	3
5	Optimal state space reconstruction via Monte Carlo decision tree search. Nonlinear Dynamics, 2022, 108, 1525-1545.	2.7	9
6	Coupled interaction between acoustics and unsteady flame dynamics during the transition to thermoacoustic instability in a multi-element rocket combustor. Combustion and Flame, 2022, 240, 112047.	2.8	17
7	Extreme COVID-19 waves reveal hyperexponential growth and finite-time singularity. Chaos, 2022, 32, 041104.	1.0	2
8	Preventing a global transition to thermoacoustic instability by targeting local dynamics. Scientific Reports, $2022,12,$.	1.6	1
9	Seeds of phase transition to thermoacoustic instability. New Journal of Physics, 2022, 24, 063008.	1.2	2
10	Rijke tube: A nonlinear oscillator. Chaos, 2022, 32, .	1.0	7
11	Dynamical systems and complex systems theory to study unsteady combustion. Proceedings of the Combustion Institute, 2021, 38, 3445-3462.	2.4	37
12	Effect of preheating of the reactants on the transition to thermoacoustic instability in a bluff-body stabilized dump combustor. Proceedings of the Combustion Institute, 2021, 38, 6193-6201.	2.4	8
13	Flame dynamics during intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-stabilized annular combustor. Proceedings of the Combustion Institute, 2021, 38, 6221-6230.	2.4	15
14	Effect of rate of change of parameter on early warning signals for critical transitions. Chaos, 2021, 31, 013116.	1.0	23
15	Effect of amplitude and frequency of limit cycle oscillators on their coupled and forced dynamics. Nonlinear Dynamics, 2021, 103, 1439-1452.	2.7	18
16	Experimental investigation on the susceptibility of minimal networks to a change in topology and number of oscillators. Physical Review E, 2021, 103, 022207.	0.8	18
17	Intermittency, Secondary Bifurcation and Mixed-Mode Oscillations in a Swirl-Stabilized Annular Combustor: Experiments and Modeling. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	6
18	Capturing multifractality of pressure fluctuations in thermoacoustic systems using fractional-order derivatives. Chaos, 2021, 31, 033108.	1.0	2

#	Article	IF	CITATIONS
19	Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems. Chaos, 2021, 31, 043126.	1.0	11
20	Suppression of thermoacoustic instability by targeting the hubs of the turbulent networks in a bluff body stabilized combustor. Journal of Fluid Mechanics, 2021, 916, .	1.4	22
21	Detection of dynamical regime transitions with lacunarity as a multiscale recurrence quantification measure. Nonlinear Dynamics, 2021, 104, 3955-3973.	2.7	14
22	Dynamics of Coupled Thermoacoustic Oscillators Under Asymmetric Forcing. Physical Review Applied, 2021, 15, .	1.5	10
23	Critical region in the spatiotemporal dynamics of a turbulent thermoacoustic system and smart passive control. Combustion and Flame, 2021, 226, 274-284.	2.8	5
24	Dragon-king extreme events as precursors for catastrophic transition. Europhysics Letters, 2021, 134, 34006.	0.7	22
25	Critical transitions and their early warning signals in thermoacoustic systems. European Physical Journal: Special Topics, 2021, 230, 3411-3432.	1.2	14
26	Dynamical Characterization of Thermoacoustic Oscillations in a Hydrogen-Enriched Partially Premixed Swirl-Stabilized Methane/Air Combustor. Journal of Engineering for Gas Turbines and Power, 2021, , .	0.5	7
27	Predicting the Amplitude of Thermoacoustic Instability Using Universal Scaling Behavior. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	2
28	Convolutional neural networks to predict the onset of oscillatory instabilities in turbulent systems. Chaos, 2021, 31, 093131.	1.0	6
29	Deep learning for early warning signals of tipping points. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	84
30	Thermoacoustic Instability Is Self-Organization in a Complex System. Springer Series in Synergetics, 2021, , 149-166.	0.2	0
31	Synchronization Between the Acoustic Field of the Confinement and the Turbulent Reacting Flow. Springer Series in Synergetics, 2021, , 223-272.	0.2	0
32	Model for Intermittency Route to Thermoacoustic Instability. Springer Series in Synergetics, 2021, , 273-284.	0.2	0
33	Early Warning and Mitigation Strategies for Thermoacoustic Instability. Springer Series in Synergetics, 2021, , 387-424.	0.2	1
34	Summary and Perspective. Springer Series in Synergetics, 2021, , 437-447.	0.2	0
35	Bifurcation to Limit Cycle Oscillations in Laminar Thermoacoustic Systems. Springer Series in Synergetics, 2021, , 87-117.	0.2	О
36	Multifractal Analysis of Turbulent Thermoacoustic Systems. Springer Series in Synergetics, 2021, , 285-328.	0.2	0

#	Article	IF	CITATIONS
37	Thermoacoustic Instability. Springer Series in Synergetics, 2021, , .	0.2	19
38	On the mechanism of open-loop control of thermoacoustic instability in a laminar premixedÂcombustor. Journal of Fluid Mechanics, 2020, 884, .	1.4	15
39	Bursting during intermittency route to thermoacoustic instability: Effects of slow–fast dynamics. Chaos, 2020, 30, 103112.	1.0	27
40	Emergence of order from chaos: A phenomenological model of coupled oscillators. Chaos, Solitons and Fractals, 2020, 141, 110334.	2.5	8
41	Universality in spectral condensation. Scientific Reports, 2020, 10, 17405.	1.6	14
42	Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Physics of Fluids, 2020, 32, .	1.6	97
43	Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors. Nonlinear Dynamics, 2020, 100, 3295-3306.	2.7	17
44	Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Chaos, 2020, 30, 033121.	1.0	15
45	Universality in the emergence of oscillatory instabilities in turbulent flows. Europhysics Letters, 2020, 129, 24004.	0.7	18
46	Recurrence analysis of slow–fast systems. Chaos, 2020, 30, 063152.	1.0	12
47	Multifractal analysis of flame dynamics during transition to thermoacoustic instability in a turbulent combustor. Journal of Fluid Mechanics, 2020, 888, .	1.4	18
48	Rate dependent transition to thermoacoustic instability via intermittency in a turbulent afterburner. Experimental Thermal and Fluid Science, 2020, 114, 110046.	1.5	18
49	Lagrangian Analysis of Flame Dynamics in the Flow Field of a Bluff Body-Stabilized Combustor. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	2
50	A numerical study of an acoustic–hydrodynamic system exhibiting an intermittent prelude to instability. International Journal of Aeroacoustics, 2019, 18, 536-553.	0.8	3
51	On the emergence of large clusters of acoustic power sources at the onset of thermoacoustic instability in a turbulent combustor. Journal of Fluid Mechanics, 2019, 874, 455-482.	1.4	28
52	Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor. Chaos, 2019, 29, 103115.	1.0	34
53	Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems. Chaos, 2019, 29, 093135.	1.0	34
54	Forced synchronization and asynchronous quenching of periodic oscillations in a thermoacoustic system. Journal of Fluid Mechanics, 2019, 864, 73-96.	1.4	24

#	Article	IF	Citations
55	Nonlinear flame response dependencies of a V-flame subjected to harmonic forcing and turbulence. Combustion and Flame, 2019, 207, 101-119.	2.8	5
56	Bursting and mixed mode oscillations during the transition to limit cycle oscillations in a matrix burner. Chaos, 2019, 29, 043117.	1.0	30
57	Lagrangian analysis of intermittent sound sources in the flow-field of a bluff-body stabilized combustor. Physics of Fluids, 2019, 31, .	1.6	29
58	Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system. Chaos, 2019, 29, 031102.	1.0	10
59	Strange nonchaos in self-excited singing flames. Europhysics Letters, 2019, 128, 54005.	0.7	20
60	Mitigation of oscillatory instability in turbulent reactive flows: A novel approach using complex networks. Europhysics Letters, 2019, 128, 14003.	0.7	21
61	Analysis and classification of droplet characteristics from atomizers using multifractal analysis. Scientific Reports, 2019, 9, 16218.	1.6	5
62	Synchronization route to weak chimera in four candle-flame oscillators. Physical Review E, 2019, 100, 062204.	0.8	19
63	Phase synchronization and collective interaction of multiple flamelets in a laboratory scale spray combustor. Proceedings of the Combustion Institute, 2019, 37, 5121-5128.	2.4	5
64	Temporal and Spatiotemporal Analyses of Synchronization Transition in a Swirl-Stabilized Combustor. AIAA Journal, 2019, 57, 836-847.	1.5	15
65	Role of buoyancy-driven vortices in inducing different modes of coupled behaviour in candle-flame oscillators. AIP Advances, 2019, 9, .	0.6	19
66	Spatiotemporal dynamics during the transition to thermoacoustic instability: Effect of varying turbulence intensities. International Journal of Spray and Combustion Dynamics, 2018, 10, 337-350.	0.4	5
67	Suppression of thermoacoustic instability in a swirl-stabilized combustor by inducing blockage in the inlet flow stream. , $2018, , .$		0
68	Characterization of forced response of density stratified reacting wake. Chaos, 2018, 28, 023108.	1.0	8
69	Synchronization Behaviour During the Dynamical Transition in Swirl-Stabilized Combustor: Temporal and Spatiotemporal Analysis. , 2018, , .		1
70	Predicting the Amplitude of Limit Cycle Oscillations in Thermoacoustic Systems with Vortex Shedding. , 2018, , .		0
71	Intermittency: A State that Precedes Thermoacoustic Instability. Energy, Environment, and Sustainability, 2018, , 403-430.	0.6	3
72	Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators. Chaos, 2018, 28, 033119.	1.0	32

#	Article	IF	CITATIONS
73	Sensitivity and Nonlinearity of Thermoacoustic Oscillations. Annual Review of Fluid Mechanics, 2018, 50, 661-689.	10.8	203
74	Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor. Chaos, 2018, 28, 113111.	1.0	46
75	Flame blowout: Transition to an absorbing phase. Chaos, 2018, 28, 113121.	1.0	5
76	Effect of noise amplification during the transition to amplitude death in coupled thermoacoustic oscillators. Chaos, 2018, 28, 093116.	1.0	24
77	On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor. Chaos, 2018, 28, 063125.	1.0	26
78	Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency. Journal of Fluid Mechanics, 2018, 849, 615-644.	1.4	39
79	Predicting the Amplitude of Limit-Cycle Oscillations in Thermoacoustic Systems with Vortex Shedding. AIAA Journal, 2018, 56, 3507-3514.	1.5	10
80	Synchronization Transition in a Thermoacoustic System: Temporal and Spatiotemporal Analyses. Green Energy and Technology, 2018, , 125-150.	0.4	3
81	Experimental Evidence of Amplitude Death and Phase-Flip Bifurcation between In-Phase and Anti-Phase Synchronization. Scientific Reports, 2018, 8, 11626.	1.6	44
82	Change of criticality in a prototypical thermoacoustic system. Chaos, 2017, 27, 023106.	1.0	22
83	Network structure of turbulent premixed flames. Chaos, 2017, 27, 043107.	1.0	20
84	Acoustic-hydrodynamic-flame couplingâ€"A new perspective for zero and low Mach number flows. Physics of Fluids, 2017, 29, .	1.6	2
85	Onset of thermoacoustic instability in turbulentÂcombustors: an emergence ofÂsynchronized periodicity through formationÂofÂchimera-likeÂstates. Journal of Fluid Mechanics, 2017, 811, 659-681.	1.4	69
86	Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos, 2017, 27, 103119.	1.0	46
87	Recurrence networks to study dynamical transitions in a turbulent combustor. Chaos, 2017, 27, 063113.	1.0	53
88	Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system. Scientific Reports, 2017, 7, 5414.	1.6	11
89	Multi-fractality in aeroelastic response as a precursor to flutter. Journal of Sound and Vibration, 2017, 386, 390-406.	2.1	41
90	Flame dynamics during intermittency in a turbulent combustor. Proceedings of the Combustion Institute, 2017, 36, 3791-3798.	2.4	43

#	Article	IF	CITATIONS
91	Hybrid CFD/low-order modeling of nonlinear thermoacoustic oscillations. Proceedings of the Combustion Institute, 2017, 36, 3827-3834.	2.4	36
92	A systems perspective on non-normality in low-order thermoacoustic models: Full norms, semi-norms and transient growth. International Journal of Spray and Combustion Dynamics, 2017, 9, 19-43.	0.4	8
93	Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. Journal of Fluid Mechanics, 2017, 827, 664-693.	1.4	88
94	Intermittency Route to Combustion Instability in a Laboratory Spray Combustor. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	0.5	31
95	Compact standing wave thermoacoustic generator for power conversion applications. Applied Acoustics, 2016, 110, 110-118.	1.7	15
96	Precursors to self-sustained oscillations in aeroacoustic systems. International Journal of Aeroacoustics, 2016, 15, 312-323.	0.8	15
97	Recurrence Plots for the Analysis of Combustion Dynamics. Springer Proceedings in Physics, 2016, , 321-339.	0.1	0
98	Stochastic bifurcations in a prototypical thermoacoustic system. Physical Review E, 2016, 94, 022203.	0.8	27
99	Precursors to blowout in a turbulent combustor based on recurrence quantification. , 2016, , .		9
100	Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter. Physical Review E, 2016, 94, 042206.	0.8	26
101	Early warning signals for critical transitions in a thermoacoustic system. Scientific Reports, 2016, 6, 35310.	1.6	70
102	A bifurcation giving birth to order in an impulsively driven complex system. Chaos, 2016, 26, 083103.	1.0	7
103	Non-normality and nonlinearity in thermoacoustic instabilities. International Journal of Spray and Combustion Dynamics, 2016, 8, 119-146.	0.4	42
104	Precursors to flutter instability by an intermittency route: A model free approach. Journal of Fluids and Structures, 2016, 61, 376-391.	1.5	51
105	Detecting the Onset of an Impending Thermoacoustic Instability Using Complex Networks. Journal of Propulsion and Power, 2016, 32, 707-712.	1.3	42
106	A reduced-order deterministic model describing an intermittency route to combustion instability. Combustion Theory and Modelling, 2016, 20, 441-456.	1.0	31
107	Multifractal characteristics of combustor dynamics close to lean blowout. Journal of Fluid Mechanics, 2015, 784, 30-50.	1.4	50
108	Combustion noise is scale-free: transition from scale-free to order at the onset of thermoacoustic instability. Journal of Fluid Mechanics, 2015, 772, 225-245.	1.4	106

#	Article	IF	Citations
109	Effect of external noise on the hysteresis characteristics of a thermoacoustic system. Journal of Fluid Mechanics, 2015, 776, 334-353.	1.4	50
110	Detecting deterministic nature of pressure measurements from a turbulent combustor. Physical Review E, 2015, 92, 062902.	0.8	68
111	Online Detection of Impending Instability in a Combustion System Using Tools from Symbolic Time Series Analysis. International Journal of Spray and Combustion Dynamics, 2015, 7, 243-255.	0.4	15
112	Distributed time lag response functions for the modelling of combustion dynamics. Combustion Theory and Modelling, 2015, 19, 223-237.	1.0	18
113	Experimental Investigation of Bifurcations in a Thermoacoustic Engine. International Journal of Spray and Combustion Dynamics, 2015, 7, 113-129.	0.4	17
114	Experimental Investigation of Non-Normality of Thermoacoustic Interaction in an Electrically Heated Rijke Tube. International Journal of Spray and Combustion Dynamics, 2015, 7, 315-352.	0.4	16
115	Multifractal characterization of combustion dynamics. , 2015, , .		1
116	A reduced-order model for the onset of combustion instability: Physical mechanisms for intermittency and precursors. Proceedings of the Combustion Institute, 2015, 35, 3193-3200.	2.4	74
117	Intermittency as a Transition State in Combustor Dynamics: An Explanation for Flame Dynamics Near Lean Blowout. Combustion Science and Technology, 2015, 187, 1821-1835.	1.2	35
118	Instability mechanisms in a low-Mach-number reacting flow from coupled convection-reaction-diffusion equations. Physics of Fluids, 2015, 27, .	1.6	4
119	Intermittent Burst Oscillations: Signature Prior to Flame Blowout in a Turbulent Swirl-Stabilized Combustor. Journal of Propulsion and Power, 2015, 31, 1661-1671.	1.3	15
120	Role of Flame Dynamics on the Bifurcation Characteristics of a Ducted V-Flame. Combustion Science and Technology, 2015, 187, 894-905.	1.2	17
121	Intermittency in the Dynamics of Turbulent Combustors. , 2014, , .		0
122	Intermittency route to thermoacoustic instability in turbulent combustors. Journal of Fluid Mechanics, 2014, 756, 470-487.	1.4	233
123	Influence of System Parameters on the Hysteresis Characteristics of a Horizontal Rijke Tube. International Journal of Spray and Combustion Dynamics, 2014, 6, 293-316.	0.4	33
124	Multifractality in combustion noise: predicting an impending combustion instability. Journal of Fluid Mechanics, 2014, 747, 635-655.	1.4	169
125	Performance optimization of tunable standing wave thermoacoustic engine by varying the stack parameters and resonator length: An experimental study. , 2014 , , .		1
126	Investigation of Flame Dynamics in a V - Flame Combustor During Combustion Instability. , 2014, , .		0

#	Article	IF	Citations
127	Engineering Precursors to Forewarn the Onset of an Impending Combustion Instability. , 2014, , .		6
128	Experimental investigation of noise induced triggering in thermoacoustic systems. Proceedings of the Combustion Institute, 2013, 34, 3175-3183.	2.4	54
129	Novel perspectives on the dynamics of premixed flames. Combustion and Flame, 2013, 160, 1215-1224.	2.8	55
130	Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames – CORRIGENDUM. Journal of Fluid Mechanics, 2013, 733, 680-680.	1.4	5
131	Non-normality in combustion–acoustic interaction in diffusion flames: a critical revision. Journal of Fluid Mechanics, 2013, 733, 681-683.	1.4	12
132	Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos, 2013, 23, 033136.	1.0	61
133	Uncertainty quantification of subcritical bifurcations. Probabilistic Engineering Mechanics, 2013, 34, 177-188.	1.3	7
134	Thermoacoustic Instabilities in a Ducted Premixed Flame: Reduced-Order Models and Control. Combustion Science and Technology, 2013, 185, 920-942.	1.2	7
135	Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability. International Journal of Spray and Combustion Dynamics, 2013, 5, 273-290.	0.4	128
136	Subcritical bifurcation and bistability in thermoacoustic systems. Journal of Fluid Mechanics, 2013, 715, 210-238.	1.4	57
137	Route to chaos for combustion instability in ducted laminar premixed flames. Chaos, 2012, 22, 023129.	1.0	141
138	Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dynamics Research, 2012, 44, 031408.	0.6	24
139	Dynamics of Thermoacoustic Oscillations Leading to Lean Flame Blowout. , 2012, , .		0
140	Sound Production by Vorticity Fluctuations in a Stagnation Point Flow. International Journal of Aeroacoustics, 2012, 11, 581-605.	0.8	0
141	Bifurcations of Self-Excited Ducted Laminar Premixed Flames. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	0.5	86
142	Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. Journal of Fluid Mechanics, 2012, 713, 376-397.	1.4	191
143	Disturbance energy norms: A critical analysis. Journal of Sound and Vibration, 2012, 331, 1552-1566.	2.1	17
144	Non-normality and internal flame dynamics in premixed flame–acoustic interaction. Journal of Fluid Mechanics, 2011, 679, 315-342.	1.4	24

#	Article	IF	CITATIONS
145	Dynamics of Spray – Swirl – Acoustics Interactions. International Journal of Spray and Combustion Dynamics, 2011, 3, 1-22.	0.4	12
146	Modelling nonlinear thermoacoustic instability in an electrically heated Rijke tube. Journal of Fluid Mechanics, 2011, 680, 511-533.	1.4	37
147	Experimental Studies of Bifurcations Leading to Chaos in a Laboratory Scale Thermoacoustic System. , 2011, , .		6
148	Investigation of Subcritical Instability in Ducted Premixed Flames., 2011,,.		11
149	Identification of heat transfer dynamics for non-modal analysis of thermoacoustic stability. Applied Mathematics and Computation, 2011, 217, 5134-5150.	1.4	26
150	On Chu's disturbance energy. Journal of Sound and Vibration, 2011, 330, 5280-5291.	2.1	32
151	Non-normality and its consequences in active control of thermoacoustic instabilities. Journal of Fluid Mechanics, 2011, 670, 130-149.	1.4	30
152	Bifurcation Analysis of Thermoacoustic Instability in a Horizontal Rijke Tube. International Journal of Spray and Combustion Dynamics, 2010, 2, 325-355.	0.4	97
153	Exact solutions for the longitudinal vibration of non-uniform rods: Author's reply. Journal of Sound and Vibration, 2010, 329, 4108.	2.1	0
154	Thermoacoustic instability in a solid rocket motor: non-normality and nonlinear instabilities. Journal of Fluid Mechanics, 2010, 653, 1-33.	1.4	32
155	Emergence of acoustic waves from vorticity fluctuations: Impact of non-normality. Physical Review E, 2009, 80, 046321.	0.8	10
156	$Identification \ of \ Heat\ Transfer\ Dynamics\ for\ Nonmodal\ Stability\ Analysis\ of\ Thermoacoustic\ Systems.\ , 2009, , .$		2
157	Characterizing energy growth during combustion instabilities: Singularvalues or eigenvalues?. Proceedings of the Combustion Institute, 2009, 32, 2933-2940.	2.4	52
158	Revisiting a Model for Combustion Instability Involving Vortex Shedding. Combustion Science and Technology, 2009, 181, 457-482.	1,2	8
159	An automated vortex detection scheme using the wavelet transform of the d 2 field. Experiments in Fluids, 2008, 45, 857-868.	1.1	18
160	Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames. Journal of Fluid Mechanics, 2008, 594, 29-57.	1.4	130
161	Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity. Physics of Fluids, 2008, 20, .	1.6	188
162	Nonlinear Response of Diffusion Flames to Uniform Velocity Disturbances. Combustion Science and Technology, 2008, 180, 418-436.	1.2	23

#	Article	IF	CITATIONS
163	Impact of Linear Coupling on Thermoacoustic Instabilities. Combustion Science and Technology, 2008, 180, 1588-1612.	1.2	12
164	Characterization of a Prefilming Airblast Atomizer in a Strong Swirl Flow Field. Journal of Propulsion and Power, 2008, 24, 1124-1132.	1.3	12
165	Characterization of an Acoustically Self-Excited Combustor for Spray Evaporation. Journal of Propulsion and Power, 2008, 24, 1382-1389.	1.3	16
166	Effect of Liquid Injection on Acoustic Field Induced from Supersonic Flow Past Cavities. Journal of Propulsion and Power, 2008, 24, 681-687.	1.3	4
167	Mechanism of Pipe-Tone Excitation by Flow through an Orifice in a Duct. International Journal of Aeroacoustics, 2008, 7, 321-347.	0.8	20
168	Nonlinear Distortion of Traveling Waves in Non-Uniform Gasdynamic Flows. International Journal of Aeroacoustics, 2008, 7, 243-265.	0.8	0
169	Unsteady combustion response of a ducted non-premixed flame and acoustic coupling. Combustion Theory and Modelling, 2007, 11 , 205-226.	1.0	50
170	Characteristics of acoustic standing waves in packed-bed columns. AICHE Journal, 2007, 53, 297-304.	1.8	9
171	Swirler Flow Field Characteristics in a Sudden Expansion Combustor Geometry. Journal of Propulsion and Power, 2006, 22, 800-808.	1.3	27
172	The Effect of Resonant Acoustic Oscillations on Heat and Mass Transfer Rates in a Convection Air Dryer. Drying Technology, 2006, 24, 931-939.	1.7	11
173	ACOUSTIC NEARFIELD CHARACTERISTICS OF A WRINKLED PREMIXED FLAME. Combustion Science and Technology, 2006, 178, 1263-1295.	1.2	6
174	Closed-form solutions for the free longitudinal vibration of inhomogeneous rods. Journal of Sound and Vibration, 2005, 283, 1015-1030.	2.1	49
175	The propagation of finite amplitude gasdynamic disturbances in a stratified atmosphere around a celestial body: An analytical study. Physica D: Nonlinear Phenomena, 2005, 211, 139-150.	1.3	8
176	An experimental investigation of interaction of sprays with acoustic fields. Experiments in Fluids, 2005, 38, 576-587.	1.1	49
177	Relativistic shock formation in the presence of radial entropy gradients. Physics of Fluids, 2005, 17, 057105.	1.6	1
178	Magnetohydrodynamic shock wave formation: Effect of area and density variation. Physics of Plasmas, 2005, 12, 052116.	0.7	2
179	Nonlinear distortion of travelling waves in variable-area ducts with base flow: a quasi-one-dimensional analysis. Journal of Fluid Mechanics, 2005, 536, 347-366.	1.4	7
180	Kinematic Coupling Effects on Heat-Release Transfer Function of a Premixed Flame. Journal of Propulsion and Power, 2005, 21, 591-599.	1.3	8

#	Article	IF	CITATIONS
181	FLOW VISUALIZATION STUDIES OF JETS IN THE PRESENCE OF LOUD PURE TONES. Journal of Flow Visualization and Image Processing, 2005, 12, 197-214.	0.3	3
182	Shock formation in the presence of entropy gradients in fluids exhibiting mixed nonlinearity. Physics of Fluids, 2004, 16, 4121-4128.	1.6	10
183	Nonlinear distortion of travelling waves in variable-area ducts with entropy gradients. Journal of Fluid Mechanics, 2003, 492, 1-22.	1.4	22
184	Determination of unsteady heat release distribution from acoustic pressure measurements: A reformulation of the inverse problem. Journal of the Acoustical Society of America, 2003, 114, 686-696.	0.5	9
185	Jet forking driven by pipe tone. Journal of the Acoustical Society of America, 2003, 113, 3091.	0.5	9
186	Propagation of Sound in Inhomogeneous Media: Exact, Transient Solutions in Curvilinear Geometries. Journal of Vibration and Acoustics, Transactions of the ASME, 2003, 125, 133-136.	1.0	14
187	Mixing of Transversely Injected Jets into a Crossflow Under Low-Density Conditions. AIAA Journal, 2002, 40, 1388-1394.	1.5	11
188	On the breakdown of continuum and shock formation in low-density flows. Vacuum, 2002, 65, 45-50.	1.6	2
189	Mixing of transversely injected jets into a crossflow under low-density conditions. AIAA Journal, 2002, 40, 1388-1394.	1.5	0
190	Low density heat transfer to blunt cylinders. AIP Conference Proceedings, 2001, , .	0.3	0
191	Mixing of high speed coaxial jets. Experiments in Fluids, 2001, 30, 339-345.	1.1	12
192	A FAMILY OF EXACT TRANSIENT SOLUTIONS FOR ACOUSTIC WAVE PROPAGATION IN INHOMOGENEOUS, NON-UNIFORM AREA DUCTS. Journal of Sound and Vibration, 2001, 240, 705-715.	2.1	31
193	Exact solutions for modeling sound propagation through a combustion zone. Journal of the Acoustical Society of America, 2001, 110, 1839-1844.	0.5	13
194	A theoretical investigation of enhancement of mass transfer from a packed bed using acoustic oscillations. Canadian Journal of Chemical Engineering, 2000, 78, 1145-1150.	0.9	4
195	Studies on freejets from nozzles for high-speed mixing applications. Experiments in Fluids, 2000, 29, 359-368.	1.1	5
196	Exact solutions to one-dimensional acoustic fields with temperature gradient and mean flow. Journal of the Acoustical Society of America, 2000, 108, 38-43.	0.5	53
197	Experimental Investigation of the Evaporation of Droplets in Axial Acoustic Fields. Journal of Propulsion and Power, 2000, 16, 278-285.	1.3	36
198	A Theoretical Investigation of the Behavior of Droplets in Axial Acoustic Fields. Journal of Vibration and Acoustics, Transactions of the ASME, 1999, 121, 286-294.	1.0	24

RISUJITH

#	ARTICLE	IF	CITATIONS
199	Exact solution for sound propagation in ducts with an axial mean temperature gradient and particulate damping. Journal of the Acoustical Society of America, 1999, 106, 2391-2395.	0.5	10
200	Exact Solution for One-Dimensional Acoustic Fields in Ducts With Polynomial Mean Temperature Profiles. Journal of Vibration and Acoustics, Transactions of the ASME, 1998, 120, 965-969.	1.0	27
201	An Experimental Investigation of the Behavior of Droplets in Axial Acoustic Fields. Journal of Vibration and Acoustics, Transactions of the ASME, 1997, 119, 285-292.	1.0	22
202	Exact solution for one-dimensional acoustic fields in ducts with a quadratic mean temperature profile. Journal of the Acoustical Society of America, 1997, 101, 3798-3799.	0.5	16
203	EXACT SOLUTIONS FOR THE LONGITUDINAL VIBRATION OF NON-UNIFORM RODS. Journal of Sound and Vibration, 1997, 207, 721-729.	2.1	111
204	Transfer matrix of a uniform duct with an axial mean temperature gradient. Journal of the Acoustical Society of America, 1996, 100, 2540-2542.	0.5	6
205	On the Effect of Evaporation on Droplet Drag. Journal of Fluids Engineering, Transactions of the ASME, 1996, 118, 862-864.	0.8	3
206	An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient. Journal of Sound and Vibration, 1995, 184, 389-402.	2.1	88
207	Physical mechanisms that cause intermittency that presages combustion instability and blowout in a turbulent lifted jet flame combustor. Combustion Science and Technology, 0, , 1-24.	1.2	4