Arif E Cetin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772429/publications.pdf

Version: 2024-02-01

65 papers 2,566 citations

236925 25 h-index 189892 50 g-index

66 all docs

66
docs citations

66 times ranked 3357 citing authors

#	Article	IF	CITATIONS
1	Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11784-11789.	7.1	445
2	Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Science and Applications, 2014, 3, e122-e122.	16.6	299
3	Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing. ACS Nano, 2012, 6, 9989-9995.	14.6	286
4	Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing. ACS Photonics, 2015, 2, 1167-1174.	6.6	151
5	Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Scientific Reports, 2014, 4, 6789.	3.3	134
6	Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. Journal of Electroanalytical Chemistry, 2021, 882, 114989.	3.8	112
7	Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Applied Physics Letters, 2011, 98, .	3.3	72
8	Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy. Advanced Optical Materials, 2014, 2, 866-872.	7.3	72
9	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phaseâ€Change Materials. Advanced Optical Materials, 2016, 4, 1060-1066.	7.3	67
10	Plasmon induced transparency in cascaded ï€-shaped metamaterials. Optics Express, 2011, 19, 22607.	3.4	57
11	Quantification of Multiple Molecular Fingerprints by Dualâ€Resonant Perfect Absorber. Advanced Optical Materials, 2016, 4, 1274-1280.	7.3	56
12	Thermal Tuning of Surface Plasmon Polaritons Using Liquid Crystals. Advanced Optical Materials, 2013, 1, 915-920.	7.3	54
13	Multi-resonant compact nanoaperture with accessible large nearfields. Applied Physics B: Lasers and Optics, 2015, 118, 29-38.	2,2	53
14	Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Optics Express, 2011, 19, 7921.	3.4	50
15	Plasmonically Enhanced Vibrational Biospectroscopy Using Lowâ€Cost Infrared Antenna Arrays by Nanostencil Lithography. Advanced Optical Materials, 2013, 1, 798-803.	7.3	45
16	Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nature Communications, 2017, 8, 1613.	12.8	45
17	Optical Response of Plasmonic Nanohole Arrays: Comparison of Square and Hexagonal Lattices. Plasmonics, 2016, 11, 851-856.	3.4	40
18	Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab on A Chip, 2013, 13, 4841.	6.0	39

#	Article	IF	CITATIONS
19	Nanoparticle-Based Metamaterials as Multiband Plasmonic Resonator Antennas. IEEE Nanotechnology Magazine, 2012, 11, 208-212.	2.0	38
20	Photonic crystal and plasmonic nanohole based label-free biodetection. Biosensors and Bioelectronics, 2019, 132, 196-202.	10.1	35
21	A multiple-band perfect absorber for SEIRA applications. Sensors and Actuators B: Chemical, 2018, 275, 174-179.	7.8	33
22	Electrochemical Aptasensors for Biological and Chemical Analyte Detection. Electroanalysis, 2021, 33, 277-291.	2.9	32
23	Field-effect active plasmonics for ultracompact electro-optic switching. Applied Physics Letters, 2012, 101, 121113.	3.3	29
24	Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics and Nanostructures - Fundamentals and Applications, 2015, 15, 73-80.	2.0	29
25	Synthesis and characterization of nanoceria for electrochemical sensing applications. RSC Advances, 2021, 11, 16216-16235.	3. 6	28
26	Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles. ACS Nano, 2014, 8, 4547-4558.	14.6	21
27	Nitration of tyrosine and its effect on DNA hybridization. Biosensors and Bioelectronics, 2018, 102, 464-469.	10.1	20
28	Theoretical and experimental analysis of subwavelength bowtie-shaped antennas. Journal of Electromagnetic Waves and Applications, 2015, 29, 1686-1698.	1.6	18
29	Plasmon-Coupled Photocapacitor Neuromodulators. ACS Applied Materials & 2010; Interfaces, 2020, 12, 35940-35949.	8.0	18
30	Portable Multiplex Optical Assays. Advanced Optical Materials, 2019, 7, 1801109.	7.3	17
31	Plasmonic Sensor Could Enable Label-Free DNA Sequencing. ACS Sensors, 2018, 3, 561-568.	7.8	16
32	Fabrication of Sub-10-nm Plasmonic Gaps for Ultra-Sensitive Raman Spectroscopy. Plasmonics, 2020, 15, 1165-1171.	3.4	15
33	Rayleigh anomaly-enabled mode hybridization in gold nanohole arrays by scalable colloidal lithography for highly-sensitive biosensing. Nanophotonics, 2022, 11, 507-517.	6.0	14
34	Handheld plasmonic biosensor for virus detection in field-settings. Sensors and Actuators B: Chemical, 2021, 344, 130301.	7.8	13
35	Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources. Optics Letters, 2010, 35, 1980.	3.3	12
36	Refractive Index Sensing for Measuring Single Cell Growth. ACS Nano, 2021, 15, 10710-10721.	14.6	12

#	Article	IF	Citations
37	FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures. International Nano Letters, 2015, 5, 21-27.	5.0	11
38	A Polarization Insensitive Wideâ€Band Perfect Absorber. Advanced Engineering Materials, 2019, 21, 1900188.	3.5	11
39	Electrically tunable Dicke effect in a double-ring resonator. Physical Review A, 2010, 81, .	2.5	10
40	Plasmonic Diffraction Field Pattern Imaging Could Resolve Ultrasensitive Bioinformation. ACS Photonics, 2019, 6, 2626-2635.	6.6	6
41	Determination of Electrochemical Interaction between 2â€(1Hâ€benzimidazolâ€2â€yl) Phenol and DNA Sequences. Electroanalysis, 2019, 31, 1554-1561.	2.9	6
42	Extraordinary Transmission Characteristics of Subwavelength Nanoholes with Rectangular Lattice. Plasmonics, 2017, 12, 655-661.	3.4	5
43	Multi-Band Plasmonic Platform Utilizing UT-Shaped Graphene Antenna Arrays. Plasmonics, 2018, 13, 1081-1088.	3.4	5
44	Electrochemical Detection of Linagliptin and its Interaction with DNA. Turkish Journal of Pharmaceutical Sciences, 2021, 18, 645-651.	1.4	5
45	Multiâ€walled Carbon Nanotubes and Gold Nanorod Decorated Biosensor for Detection of microRNAâ€126. Electroanalysis, 2021, 33, 2078-2086.	2.9	5
46	Investigation of Metal Ion Effect on Specific DNA Sequences and DNA Hybridization. Electroanalysis, 2020, 32, 112-118.	2.9	4
47	Electrochemical Characteristics of a Novel Pyridinium Salt as a Candidate Drug Molecule and Its Interaction with DNA. Electroanalysis, 2020, 32, 1780-1787.	2.9	4
48	Hotâ€Spot Engineering Through Soft Actuators for Surfaceâ€Enhanced Raman Spectroscopy (SERS) Applications. Advanced Optical Materials, 2021, 9, 2100009.	7.3	4
49	Lithography: Plasmonically Enhanced Vibrational Biospectroscopy Using Low ost Infrared Antenna Arrays by Nanostencil Lithography (Advanced Optical Materials 11/2013). Advanced Optical Materials, 2013, 1, 780-780.	7.3	3
50	Plasmonic nanopillar arrays for optical trapping, biosensing, and spectroscopy., 2011, , .		2
51	Plasmonic Nanoantennas on Nanopedestals for Ultra-Sensitive Vibrational IR-Spectroscopy. , 2015, , .		2
52	A Novel Molecule: 1â€(2,6 Dichlorobenzyl)â€4â€(2â€(2â€4â€hydroxybenzylidene)hydrazinyl)pyridinium Chloride its Interaction with DNA. Electroanalysis, 2021, 33, 1819-1825.	and	2
53	Ultrasensitive plasmonic fano sensor enables seeing protein monolayers with naked eye. , 2011, , .		1
54	Effects of Bloch's hydrodynamic model on surface plasmon polariton dispersion curve and enhanced transmission of light through single nano-apertures. Proceedings of SPIE, 2009, , .	0.8	0

#	Article	lF	CITATIONS
55	Plasmon enhanced detectors for smart lighting applications. , 2011, , .		O
56	Optical Trapping, Biosensing, and Spectroscopy in a Single Plasmonic Platform. Materials Research Society Symposia Proceedings, 2012, 1414, 15.	0.1	0
57	Plasmon induced transparency in cascaded π-shaped structures. Proceedings of SPIE, 2012, , .	0.8	O
58	Dynamic Tuning of Surface Plasmon Polaritons via Thermally Controlled Liquid Crystals. , 2014, , .		0
59	Hand-Held Plasmonic Biosensor for High-Throughput Sensing for Point-of-Care Applications. , 2014, , .		O
60	Field-portable optofluidic plasmonic biosensor for wide-field and label-free monitoring of molecular interactions. , 2015, , .		0
61	Investigation of plasmonic transmission in UT shaped graphene arrays. Proceedings of SPIE, 2017, , .	0.8	O
62	Effect of left-handed materials in surface plasmon excitation and propagationlength. Turkish Journal of Physics, 2019, 43, 26-36.	1.1	0
63	Asymmetric Ring/Disk Nanocavities on Conducting Substrates for Strong Fano-Interference., 2013,,.		O
64	Effective Delivery of Analytes with Optofluidics for Ultrasensitive Biodetection., 2014,,.		0
65	Interaction of nickel ferrite nanoparticles with nucleic acids. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112282.	5.0	O