David Mecerreyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic liquid/poly(ionic liquid) membranes as non-flowing, conductive materials for electrochemical gas sensing. Analytica Chimica Acta, 2022, 1195, 339414.	2.6	6
2	Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity. Materials Advances, 2022, 3, 1139-1151.	2.6	8
3	Designing Boronâ€Based Singleâ€Ion Gel Polymer Electrolytes for Lithium Batteries by Photopolymerization. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	5
4	Green electrolyte-based organic electronic devices. , 2022, , 281-295.		5
5	Fast Visible-Light Photopolymerization in the Presence of Multiwalled Carbon Nanotubes: Toward 3D Printing Conducting Nanocomposites. ACS Macro Letters, 2022, 11, 303-309.	2.3	24
6	longel Soft Solid Electrolytes Based on [DEME][TFSI] Ionic Liquid for Low Polarization Lithiumâ€O ₂ Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
7	Mixed Ionic and Electronic Conducting Eutectogels for 3Dâ€Printable Wearable Sensors and Bioelectrodes. Advanced Materials Technologies, 2022, 7, .	3.0	40
8	Singleâ€lon Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angewandte Chemie, 2022, 134, .	1.6	8
9	Singleâ€lon Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups. Angewandte Chemie - International Edition, 2022, 61, e202114024.	7.2	19
10	Thioether-based ROS responsive polymers for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7206-7221.	2.9	32
11	Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. Journal of Materials Chemistry A, 2022, 10, 12588-12596.	5.2	42
12	Gelatin and Tannic Acid Based longels for Muscle Activity Recording and Stimulation Electrodes. ACS Biomaterials Science and Engineering, 2022, 8, 2598-2609.	2.6	12
13	Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors. ACS Sustainable Chemistry and Engineering, 2022, 10, 8135-8142.	3.2	27
14	A 3D bioelectrical interface to assess colorectal cancer progression inÂvitro. Materials Today Chemistry, 2022, 24, 100990.	1.7	3
15	From plastic waste to new materials for energy storage. Polymer Chemistry, 2022, 13, 4222-4229.	1.9	6
16	Chemically recyclable glycerol-biobased polyether thermosets. European Polymer Journal, 2021, 143, 110174.	2.6	10
17	High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. Journal of Materials Chemistry A, 2021, 9, 505-514.	5.2	35
18	Flame retardant polyphosphoester copolymers as solid polymer electrolyte for lithium batteries. Polymer Chemistry, 2021, 12, 3441-3450.	1.9	23

#	Article	IF	CITATIONS
19	Single- Versus Dual-Ion UV-Cross-Linked Gel Polymer Electrolytes for Li–O ₂ Batteries. ACS Applied Energy Materials, 2021, 4, 295-302.	2.5	11
20	Design of Polymeric Corrosion Inhibitors Based on Ionic Coumarate Groups. ACS Applied Polymer Materials, 2021, 3, 1739-1746.	2.0	10
21	Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Coâ€lon Engineering. Advanced Science, 2021, 8, 2003995.	5.6	6
22	3D Printable Conducting and Biocompatible PEDOTâ€ <i>graft</i> â€PLA Copolymers by Direct Ink Writing. Macromolecular Rapid Communications, 2021, 42, e2100100.	2.0	30
23	Conducting Polymerâ€lonic Liquid Electrode Arrays for Highâ€Density Surface Electromyography. Advanced Healthcare Materials, 2021, 10, e2100374.	3.9	29
24	Stereoretention in the Bulk ROP of <scp>l</scp> -Lactide Guided by a Thermally Stable Organocatalyst. Macromolecules, 2021, 54, 6214-6225.	2.2	17
25	Polyether Single and Double Crystalline Blends and the Effect of Lithium Salt on Their Crystallinity and Ionic Conductivity. Polymers, 2021, 13, 2097.	2.0	4
26	3D Printable and Biocompatible longels for Body Sensor Applications. Advanced Electronic Materials, 2021, 7, 2100178.	2.6	30
27	Easy-to-Make Polymer Hydrogels by UV-Curing for the Cleaning of Acrylic Emulsion Paint Films. Polymers, 2021, 13, 2108.	2.0	2
28	Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Applied Polymer Materials, 2021, 3, 2865-2883.	2.0	62
29	From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustainable Chemistry and Engineering, 2021, 9, 10664-10677.	3.2	90
30	Organic batteries based on just redox polymers. Progress in Polymer Science, 2021, 122, 101449.	11.8	66
31	2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers, 2021, 13, 436.	2.0	5
32	Emerging Ionic Polymers for CO. Australian Journal of Chemistry, 2021, 74, 767-777.	0.5	11
33	Emerging iongel materials towards applications in energy and bioelectronics. Materials Horizons, 2021, 8, 3239-3265.	6.4	25
34	Single-Ion Conducting Polymer Nanoparticles as Functional Fillers for Solid Electrolytes in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54354-54362.	4.0	38
35	Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage. Sustainable Chemistry, 2021, 2, 610-621.	2.2	9
36	Ternary Poly(ethylene oxide)/Poly(<scp>l</scp> , <scp>l</scp> -lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2021, 3, 6326-6337.	2.0	19

#	Article	IF	CITATIONS
37	Development of Effective, Safer and Fast UV-Cured Solid Gel Polymer Electrolytes for Lithium-O2 Rechargeable Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 139-139.	0.0	Ο
38	Electroactive 3D printable poly(3,4-ethylenedioxythiophene)- <i>graft</i> -poly(Îμ-caprolactone) copolymers as scaffolds for muscle cell alignment. Polymer Chemistry, 2021, 13, 109-120.	1.9	19
39	Singleâ€Ion Conducting Poly(Ethylene Oxide Carbonate) as Solid Polymer Electrolyte for Lithium Batteries. Batteries and Supercaps, 2020, 3, 68-75.	2.4	37
40	Symmetric Allâ€Organic Battery Containing a Dual Redoxâ€Active Polymer as Cathode and Anode Material. ChemSusChem, 2020, 13, 2464-2470.	3.6	43
41	Influence of Chemical Structures on Isodimorphic Behavior of Three Different Copolycarbonate Random Copolymer Series. Macromolecules, 2020, 53, 669-681.	2.2	18
42	Poly(diallyldimethylammonium) based poly(ionic liquid) di- and triblock copolymers by PISA as matrices for ionogel membranes. Polymer Chemistry, 2020, 11, 1481-1488.	1.9	17
43	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	2.6	31
44	Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 8465-8478.	1.2	106
45	Water Soluble Cationic Poly(3,4â€Ethylenedioxythiophene) PEDOTâ€N as a Versatile Conducting Polymer for Bioelectronics. Advanced Electronic Materials, 2020, 6, 2000510.	2.6	25
46	Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 57330-57342.	4.0	16
47	Cation Effect in the Corrosion Inhibition Properties of Coumarate Ionic Liquids and Acrylic UV-Coatings. Polymers, 2020, 12, 2611.	2.0	9
48	Synthesis and Characterization of Fully Biobased Copolyether Polyols. Industrial & Engineering Chemistry Research, 2020, 59, 10746-10753.	1.8	10
49	High Lithium Conductivity of Miscible Poly(ethylene oxide)/Methacrylic Sulfonamide Anionic Polyelectrolyte Polymer Blends. Macromolecules, 2020, 53, 4442-4453.	2.2	22
50	Proton trap effect on catechol–pyridine redox polymer nanoparticles as organic electrodes for lithium batteries. Sustainable Energy and Fuels, 2020, 4, 3934-3942.	2.5	16
51	Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteries. Polymers, 2020, 12, 595.	2.0	20
52	Thioxanthone-Based Photobase Generators for the Synthesis of Polyurethanes via the Photopolymerization of Polyols and Polyisocyanates. Macromolecules, 2020, 53, 2069-2076.	2.2	24
53	Influence of Anion Structure on Thermal, Mechanical and CO2 Solubility Properties of UV-Cross-Linked Poly(ethylene glycol) Diacrylate Iongels. Membranes, 2020, 10, 46.	1.4	12
54	Tailored CO ₂ -Philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 5954-5965.	3.2	35

#	Article	IF	CITATIONS
55	From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. Journal of Materials Chemistry A, 2020, 8, 13921-13926.	5.2	60
56	Elastic and Thermoreversible longels by Supramolecular PVA/Phenol Interactions. Macromolecular Bioscience, 2020, 20, e2000119.	2.1	11
57	Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering Reports, 2020, 140, 100546.	14.8	140
58	The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes. Journal of Materials Chemistry A, 2020, 8, 5350-5362.	5.2	26
59	Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO ₂ -Sourced Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2020, 2, 922-931.	2.0	36
60	Innovative Polymers for Nextâ€Generation Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900490.	1.1	39
61	Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Advanced Materials, 2020, 32, e1905219.	11.1	154
62	A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chemical Science, 2020, 11, 1485-1493.	3.7	91
63	Morpholineâ€based RAFT agents for the reversible deactivation radical polymerization of vinyl acetate and <i>N</i> â€vinylimidazole. Polymer International, 2020, 69, 883-890.	1.6	5
64	Metal-free coumarate based ionic liquids and poly(ionic liquid)s as corrosion inhibitors. Materials Advances, 2020, 1, 584-589.	2.6	8
65	New poly(ionic liquid)s based on poly(azomethine-pyridinium) salts and its use as heterogeneous catalysts for CO2 conversion. European Polymer Journal, 2019, 110, 107-113.	2.6	22
66	Dual Organocatalysts Based on Ionic Mixtures of Acids and Bases: A Step Toward High Temperature Polymerizations. ACS Macro Letters, 2019, 8, 1055-1062.	2.3	44
67	Poly(ionic liquid)s/Electrospun Nanofiber Composite Polymer Electrolytes for High Energy Density and Safe Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6237-6245.	2.5	63
68	Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis. Chemistry of Materials, 2019, 31, 7080-7084.	3.2	19
69	High Coulombic Efficiency Na–O ₂ Batteries Enabled by a Bilayer Ionogel/Ionic Liquid. Journal of Physical Chemistry Letters, 2019, 10, 7050-7055.	2.1	11
70	Synthesis of Redox Polymer Nanoparticles Based on Poly(vinyl catechols) and Their Electroactivity. Macromolecules, 2019, 52, 8155-8166.	2.2	25
71	Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. Biotechnology Journal, 2019, 14, e1900062.	1.8	21
72	Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries. Joule, 2019, 3, 2687-2702.	11.7	108

#	Article	IF	CITATIONS
73	UV-Cross-Linked Ionogels for All-Solid-State Rechargeable Sodium Batteries. ACS Applied Energy Materials, 2019, 2, 6960-6966.	2.5	25
74	Polymeric ionic liquids for lithium-based rechargeable batteries. Molecular Systems Design and Engineering, 2019, 4, 294-309.	1.7	114
75	Polyether Synthesis by Bulk Self-Condensation of Diols Catalyzed by Non-Eutectic Acid–Base Organocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 4103-4111.	3.2	37
76	In situ Investigations of a Proton Trap Material: A PEDOT-Based Copolymer with Hydroquinone and Pyridine Side Groups Having Robust Cyclability in Organic Electrolytes and Ionic Liquids. ACS Applied Energy Materials, 2019, 2, 4486-4495.	2.5	15
77	Catechol-Containing Acrylic Poly(ionic liquid) Hydrogels as Bioinspired Filters for Water Decontamination. ACS Applied Polymer Materials, 2019, 1, 1887-1895.	2.0	17
78	Pyridinium Containing Amide Based Polymeric Ionic Liquids for CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10241-10247.	3.2	21
79	Isomorphic Polyoxyalkylene Copolyethers Obtained by Copolymerization of Aliphatic Diols. Macromolecules, 2019, 52, 3506-3515.	2.2	27
80	CO ₂ -sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9844-9853.	5.2	29
81	Effect of Chemical Structure and Salt Concentration on the Crystallization and Ionic Conductivity of Aliphatic Polyethers. Polymers, 2019, 11, 452.	2.0	23
82	Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery. Journal of Membrane Science, 2019, 582, 435-441.	4.1	49
83	Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Accounts of Chemical Research, 2019, 52, 686-694.	7.6	276
84	Conductive Poly(3,4-Ethylenedioxythiophene) (PEDOT)-Based Polymers and Their Applications in Bioelectronics. , 2019, , 191-218.		17
85	UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochimica Acta, 2019, 302, 414-421.	2.6	50
86	Ultrathin Fully Printed Lightâ€Emitting Electrochemical Cells with Arbitrary Designs on Biocompatible Substrates. Advanced Materials Technologies, 2019, 4, 1800641.	3.0	45
87	3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 2019, 20, 73-89.	2.6	76
88	Azo-linked porous organic polymers: robust and time-efficient synthesis <i>via</i> NaBH ₄ -mediated reductive homocoupling on polynitro monomers and adsorption capacity towards aniline in water. Journal of Materials Chemistry A, 2018, 6, 5608-5612.	5.2	36
89	A Na ⁺ conducting hydrogel for protection of organic electrochemical transistors. Journal of Materials Chemistry B, 2018, 6, 2901-2906.	2.9	13
90	Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochimica Acta, 2018, 264, 367-375.	2.6	90

#	Article	IF	CITATIONS
91	Mixing poly(ionic liquid)s and ionic liquids with different cyano anions: Membrane forming ability and CO 2 /N 2 separation properties. Journal of Membrane Science, 2018, 552, 341-348.	4.1	49
92	DVS rosslinked PEDOT:PSS Free‧tanding and Textile Electrodes toward Wearable Health Monitoring. Advanced Materials Technologies, 2018, 3, 1700322.	3.0	76
93	Polystyrene- <i>block</i> -Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2018, 10, 4887-4894.	4.0	21
94	Polyimides as cathodic materials in lithium batteries: Effect of the chemical structure of the diamine monomer. Journal of Polymer Science Part A, 2018, 56, 714-723.	2.5	25
95	Hybrid biopolymer electrodes for lithium- and sodium-ion batteries in organic electrolytes. Sustainable Energy and Fuels, 2018, 2, 836-842.	2.5	23
96	Fully Printed Lightâ€Emitting Electrochemical Cells Utilizing Biocompatible Materials. Advanced Functional Materials, 2018, 28, 1705795.	7.8	56
97	Poly(ionic liquid) iongels for all-solid rechargeable zinc/PEDOT batteries. Electrochimica Acta, 2018, 278, 271-278.	2.6	47
98	Efficient polymerization and post-modification of <i>N</i> -substituted eight-membered cyclic carbonates containing allyl groups. Polymer Chemistry, 2018, 9, 2458-2467.	1.9	18
99	Poly(anthraquinonyl sulfides): High Capacity Redox Polymers for Energy Storage. ACS Macro Letters, 2018, 7, 419-424.	2.3	77
100	Proton Conducting Membranes Based on Poly(Ionic Liquids) Having Phosphonium Counter ations. Macromolecular Rapid Communications, 2018, 39, 1700627.	2.0	20
101	Hybrid Sulfurâ^'Selenium Coâ€polymers as Cathodic Materials for Lithium Batteries. ChemElectroChem, 2018, 5, 260-265.	1.7	29
102	Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Applied Materials & Interfaces, 2018, 10, 43904-43914.	4.0	45
103	Perylene Polyimide-Polyether Anodes for Aqueous All-Organic Polymer Batteries. ACS Applied Energy Materials, 2018, 1, 7199-7205.	2.5	54
104	Biodegradable Polycarbonate longels for Electrophysiology Measurements. Polymers, 2018, 10, 989.	2.0	15
105	DNP NMR Studies of Crystalline Polymer Domains by Copolymerization with Nitroxide Radical Monomers. Macromolecules, 2018, 51, 8046-8053.	2.2	10
106	Sulfur Polymers Meet Poly(ionic liquid)s: Bringing New Properties to Both Polymer Families. Macromolecular Rapid Communications, 2018, 39, e1800529.	2.0	30
107	Structural, electronic and catalytic properties of palladium nanoparticles supported on poly(ionic) Tj ETQq1 1 0	.784314 rg 2.2	gBT ₅ /Overlock
	Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer		

Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes. European Polymer Journal, 2018, 107, 218-228.

2.6 35

#	Article	IF	CITATIONS
109	Catechol End-Functionalized Polylactide by Organocatalyzed Ring-Opening Polymerization. Polymers, 2018, 10, 155.	2.0	14
110	Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. ACS Omega, 2018, 3, 7424-7431.	1.6	55
111	Unexpected Synthesis of Segmented Poly(hydroxyurea–urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules, 2018, 51, 5556-5566.	2.2	69
112	New electroactive macromonomers and multi-responsive PEDOT graft copolymers. Polymer Chemistry, 2018, 9, 3780-3790.	1.9	15
113	Redox-active poly(ionic liquid)s as active materials for energy storage applications. Journal of Materials Chemistry A, 2017, 5, 16231-16240.	5.2	65
114	Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted Interfacial Polymerization. Langmuir, 2017, 33, 1959-1968.	1.6	36
115	Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. Polymer International, 2017, 66, 1119-1128.	1.6	42
116	Fully Printed Electrodes on Stretchable Textiles for Longâ€Term Electrophysiology. Advanced Materials Technologies, 2017, 2, 1600251.	3.0	85
117	Enantioselective Ring-Opening Polymerization of <i>rac</i> -Lactide Dictated by Densely Substituted Amino Acids. Journal of the American Chemical Society, 2017, 139, 4805-4814.	6.6	69
118	Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries. ChemSusChem, 2017, 10, 1783-1791.	3.6	43
119	Polyurethane based organic macromolecular contrast agents (PU-ORCAs) for magnetic resonance imaging. Polymer Chemistry, 2017, 8, 2693-2701.	1.9	26
120	Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes. Electrochimica Acta, 2017, 237, 259-266.	2.6	60
121	Poly(ionic liquid)-based polyurethanes having imidazolium, ammonium, morpholinium or pyrrolidinium cations. High Performance Polymers, 2017, 29, 691-703.	0.8	11
122	Effect of the fullerene in the properties of thin PEDOT/C60 films obtained by co-electrodeposition. Inorganica Chimica Acta, 2017, 468, 239-244.	1.2	9
123	Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone. ACS Applied Materials & Interfaces, 2017, 9, 18254-18262.	4.0	86
124	Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles. Polymer Chemistry, 2017, 8, 3497-3503.	1.9	26
125	Single Ion Conducting Polymer Electrolytes Based On Versatile Polyurethanes. Electrochimica Acta, 2017, 241, 526-534.	2.6	86
126	Synthesis and characterization of poly (Îμ-caprolactam-co-lactide) polyesteramides using BrÃ,nsted acid or BrÃ,nsted base organocatalyst. European Polymer Journal, 2017, 95, 650-659.	2.6	18

#	Article	IF	CITATIONS
127	Temperature responsive PEG-based polyurethanes "à la carteâ€, Polymer, 2017, 122, 117-124.	1.8	34
128	Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets. Polymer Chemistry, 2017, 8, 3641-3646.	1.9	102
129	Conducting Polymer longels Based on PEDOT and Guar Gum. ACS Macro Letters, 2017, 6, 473-478.	2.3	43
130	Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO ₂ Capture. Macromolecules, 2017, 50, 2814-2824.	2.2	49
131	Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes. Journal of Materials Chemistry A, 2017, 5, 7137-7143.	5.2	57
132	Amine containing cationic methacrylate copolymers as efficient gene delivery vehicles to retinal epithelial cells. Journal of Polymer Science Part A, 2017, 55, 280-287.	2.5	4
133	Comparison of the physicochemical and electrochemical behaviour of mixed anion phosphonium based OIPCs electrolytes for sodium batteries. Solid State Ionics, 2017, 312, 44-52.	1.3	25
134	Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. Journal of Materials Chemistry A, 2017, 5, 23844-23852.	5.2	109
135	Proton-Exchange-Induced Configuration Rearrangement in a Poly(ionic liquid) Solution: A NMR Study. Journal of Physical Chemistry Letters, 2017, 8, 5355-5359.	2.1	9
136	Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. Journal of Power Sources, 2017, 364, 191-199.	4.0	130
137	Easyâ€ŧoâ€make carboxylic acid dioxythiophene monomer (ProDOTâ€COOH) and functional conductive polymers. Journal of Polymer Science Part A, 2017, 55, 2721-2724.	2.5	17
138	Antimicrobial polyurethane foams having cationic ammonium groups. Journal of Applied Polymer Science, 2017, 134, 45473.	1.3	23
139	Hydrolytically degradable poly(ethylene glycol) based polycarbonates by organocatalyzed condensation. European Polymer Journal, 2017, 95, 737-745.	2.6	23
140	Polyimide-polyether binders–diminishing the carbon content in lithium sulfur batteries. Materials Today Energy, 2017, 6, 264-270.	2.5	37
141	Preparation of Biodegradable Cationic Polycarbonates and Hydrogels through the Direct Polymerization of Quaternized Cyclic Carbonates. ACS Biomaterials Science and Engineering, 2017, 3, 1567-1575.	2.6	28
142	High performance photolithographically-patterned polymer thin-film transistors gated with an ionic liquid/poly(ionic liquid) blend ion gel. Applied Physics Letters, 2017, 110, .	1.5	23
143	Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings. Materials, 2017, 10, 1094.	1.3	13
144	Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 2017, 9, 354.	2.0	187

#	Article	IF	CITATIONS
145	Poly(3,4â€ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Macromolecular Bioscience, 2016, 16, 1227-1238.	2.1	60
146	Adding magnetic ionic liquid monomers to the emulsion polymerization tool-box: Towards polymer latexes and coatings with new properties. Journal of Polymer Science Part A, 2016, 54, 1145-1152.	2.5	12
147	Tuning the Selectivity of Biodegradable Antimicrobial Cationic Polycarbonates by Exchanging the Counterâ€Anion. Macromolecular Bioscience, 2016, 16, 1360-1367.	2.1	25
148	Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers. Macromolecular Rapid Communications, 2016, 37, 1135-1142.	2.0	45
149	Synthesis of three different galactose-based methacrylate monomers for the production of sugar-based polymers. Carbohydrate Research, 2016, 432, 50-54.	1.1	11
150	Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium–Sulfur Batteries. ChemSusChem, 2016, 9, 3419-3425.	3.6	124
151	Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10350-10359.	4.0	251
152	Nanoporous amide networks based on tetraphenyladamantane for selective CO ₂ capture. Journal of Materials Chemistry A, 2016, 4, 8190-8197.	5.2	51
153	Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Letters, 2016, 1, 678-682.	8.8	270
154	Sustainable Poly(Ionic Liquids) for CO ₂ Capture Based on Deep Eutectic Monomers. ACS Sustainable Chemistry and Engineering, 2016, 4, 7200-7208.	3.2	68
155	Magnetic Poly(Ionic Liquid) Microcapsules for Oil Capture and Recovery. Particle and Particle Systems Characterization, 2016, 33, 734-739.	1.2	15
156	Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. Journal of Power Sources, 2016, 329, 72-78.	4.0	97
157	Organic-acid mediated bulk polymerization of ε-caprolactam and its copolymerization with ε-caprolactone. Journal of Polymer Science Part A, 2016, 54, 2394-2402.	2.5	20
158	Preparation of poly(ionic liquid) nanoparticles and their novel application as flocculants for water purification. Polymer Chemistry, 2016, 7, 1668-1674.	1.9	46
159	Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates. Polymer Chemistry, 2016, 7, 2105-2111.	1.9	71
160	Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science, 2016, 56, 64-115.	11.8	289
161	High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1838-1847.	5.2	168
162	PEDOT Radical Polymer with Synergetic Redox and Electrical Properties. ACS Macro Letters, 2016, 5, 59-64.	2.3	92

4

#	Article	IF	CITATIONS
163	Current trends in redox polymers for energy and medicine. Progress in Polymer Science, 2016, 52, 107-135.	11.8	148
164	Redox Active Compounds in Controlled Radical Polymerization and Dyeâ€Sensitized Solar Cells: Mutual Solutions to Disparate Problems. Chemistry - A European Journal, 2015, 21, 18516-18527.	1.7	11
165	Thermoresponsive Random Poly(ether urethanes) with Tailorable LCSTs for Anticancer Drug Delivery. Macromolecular Rapid Communications, 2015, 36, 1761-1767.	2.0	37
166	Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochimica Acta, 2015, 175, 18-34.	2.6	371
167	From Polymer Latexes to Multifunctional Liquid Marbles. ACS Applied Materials & Interfaces, 2015, 7, 4433-4441.	4.0	26
168	Redox-active polyimide–polyether block copolymers as electrode materials for lithium batteries. RSC Advances, 2015, 5, 17096-17103.	1.7	71
169	Polymeric ionic liquids for CO ₂ capture and separation: potential, progress and challenges. Polymer Chemistry, 2015, 6, 6435-6451.	1.9	157
170	All Poly(ionic liquid)-Based Block Copolymers by Sequential Controlled Radical Copolymerization of Vinylimidazolium Monomers. Macromolecules, 2015, 48, 5230-5243.	2.2	34
171	Highly conductive electrolytes based on poly([HSO3-BVIm][TfO])/[HSO3-BMIm][TfO] mixtures for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 11294-11302.	3.8	30
172	Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. Journal of Membrane Science, 2015, 486, 40-48.	4.1	92
173	Broad-Spectrum Antimicrobial Polycarbonate Hydrogels with Fast Degradability. Biomacromolecules, 2015, 16, 1169-1178.	2.6	90
174	Ionic Liquid and Cellulose Technologies: Dissolution, Modification and Composite Preparation. , 2015, , 135-152.		1
175	Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochimica Acta, 2015, 175, 74-79.	2.6	13
176	Synthesis of Polyurethanes Using Organocatalysis: A Perspective. Macromolecules, 2015, 48, 3153-3165.	2.2	237
177	Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation. Journal of Membrane Science, 2015, 483, 155-165.	4.1	92
178	Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems. Physical Chemistry Chemical Physics, 2015, 17, 27462-27472.	1.3	10
179	Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology. Journal of Materials Chemistry C, 2015, 3, 8942-8948.	2.7	52

Polymeric Ion Gels: Preparation Methods, Characterization, and Applications. , 2015, , 283-315.

#	Article	IF	CITATIONS
181	Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with Îμ-caprolactone and TBD-guanidine organic catalyst. Journal of Polymer Science Part A, 2015, 53, 552-561.	2.5	42
182	Supramolecular ionic networks with superior thermal and transport properties based on novel delocalized di-anionic compounds. Journal of Materials Chemistry A, 2015, 3, 2338-2343.	5.2	22
183	Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials. International Journal of Molecular Sciences, 2014, 15, 11922-11940.	1.8	344
184	Cholinium Lactate Methacrylate: Ionic Liquid Monomer for Cellulose Composites and Biocompatible Ion Gels. Macromolecular Symposia, 2014, 342, 21-24.	0.4	11
185	Precision Synthesis of Poly(Ionic Liquid)â€Based Block Copolymers by Cobaltâ€Mediated Radical Polymerization and Preliminary Study of Their Selfâ€Assembling Properties. Macromolecular Rapid Communications, 2014, 35, 422-430.	2.0	44
186	Direct Route to Well-Defined Poly(ionic liquid)s by Controlled Radical Polymerization in Water. ACS Macro Letters, 2014, 3, 1276-1280.	2.3	43
187	New amphiphilic block copolymers from lactic acid and cholinium building units. RSC Advances, 2014, 4, 53407-53410.	1.7	8
188	Poly(ionic liquid)s with redox active counter-anions: All-in-one reactants and stabilizers for the synthesis of functional colloids. Reactive and Functional Polymers, 2014, 79, 54-58.	2.0	31
189	Post-polymerization modification and organocatalysis using reactive statistical poly(ionic) Tj ETQq1 1 0.784314	rgBT_/Ovei	rloဌg 10 Tf <mark>5</mark> (
190	Highly tunable polyurethanes: organocatalyzed polyaddition and subsequent post-polymerization modification of pentafluorophenyl ester sidechains. Polymer Chemistry, 2014, 5, 3547-3550.	1.9	37
191	Ionic Supramolecular Networks Fully Based on Chemicals Coming from Renewable Sources. Macromolecular Rapid Communications, 2014, 35, 460-465.	2.0	33
192	Polymeric ionic liquid membranes containing IL–Ag+ for ethylene/ethane separation via olefin-facilitated transport. Journal of Materials Chemistry A, 2014, 2, 5631.	5.2	74
193	Poly(ionic liquids) as "smart―stabilizers for metal nanoparticles. European Polymer Journal, 2014, 60, 114-122.	2.6	78
194	Organocatalyzed Synthesis of Aliphatic Polyesters from Ethylene Brassylate: A Cheap and Renewable Macrolactone. ACS Macro Letters, 2014, 3, 849-853.	2.3	67
195	Simple route to prepare stable liquid marbles using poly(ionic liquid)s. Polymer, 2014, 55, 3397-3403.	1.8	20
196	Odorless polymer latexes based on renewable protic ionic liquids for pressure-sensitive adhesives. Green Materials, 2014, 2, 24-30.	1.1	6
197	Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. Journal of Membrane Science, 2013, 428, 260-266.	4.1	156
198	Organic Acid-Catalyzed Polyurethane Formation via a Dual-Activated Mechanism: Unexpected Preference of N-Activation over O-Activation of Isocyanates. Journal of the American Chemical Society, 2013, 135, 16235-16241.	6.6	76

#	Article	IF	CITATIONS
199	Poly(ionic liquid)s based on imidazolium hydrogen carbonate monomer units as recyclable polymer-supported <i>N</i> -heterocyclic carbenes: Use in organocatalysis. Journal of Polymer Science Part A, 2013, 51, 4530-4540.	2.5	58
200	Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes. Journal of Materials Chemistry A, 2013, 1, 10403.	5.2	69
201	Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry, 2013, 4, 2206.	1.9	226
202	Cholinium-Based Poly(ionic liquid)s: Synthesis, Characterization, and Application as Biocompatible Ion Gels and Cellulose Coatings. ACS Macro Letters, 2013, 2, 975-979.	2.3	75
203	Acid catalyzed polymerization of macrolactones in bulk and aqueous miniemulsion: Ring opening vs. condensation. European Polymer Journal, 2013, 49, 1601-1609.	2.6	38
204	Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals. Nanoscale, 2013, 5, 239-245.	2.8	11
205	Poly(ionic liquid)s: An update. Progress in Polymer Science, 2013, 38, 1009-1036.	11.8	1,110
206	Homogeneous isocyanate- and catalyst-free synthesis of polyurethanes in aqueous media. Green Chemistry, 2013, 15, 1121.	4.6	44
207	New supramolecular ionic networks based on citric acid and geminal dicationic ionic liquids. RSC Advances, 2013, 3, 8677.	1.7	23
208	New CO2 Separation Membranes based on Pyrrolidinium Ionic Materials. Procedia Engineering, 2012, 44, 1583-1584.	1.2	0
209	Comparison Between Two Different Synthetic Routes of Pyrrolidinium Functional Polymeric Ionic Liquids. Macromolecular Symposia, 2012, 311, 77-82.	0.4	11
210	Synthesis and Rheological Behavior of Supramolecular Ionic Networks Based on Citric Acid and Aliphatic Diamines. Macromolecules, 2012, 45, 7599-7606.	2.2	49
211	Facile incorporation of natural carboxylic acids into polymers via polymerization of protic ionic liquids. Journal of Polymer Science Part A, 2012, 50, 1049-1053.	2.5	22
212	Facile Synthesis of Supramolecular Ionic Polymers That Combine Unique Rheological, Ionic Conductivity, and Selfâ€Healing Properties. Macromolecular Rapid Communications, 2012, 33, 314-318.	2.0	67
213	Electrochemical reduction of O2 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid containing Zn2+ cations: deposition of non-polar oriented ZnO nanocrystalline films. Physical Chemistry Chemical Physics, 2011, 13, 13433.	1.3	30
214	Enhanced extraction efficiency in nanoimprinted light emitting structures mediated by plasmon-exciton interaction. , 2011, , .		0
215	Synthesis of paramagnetic polymers using ionic liquid chemistry. Polymer Chemistry, 2011, 2, 1275.	1.9	91
216	Polymeric ionic liquids for the fast preparation of superhydrophobic coatings by the simultaneous spraying of oppositely charged polyelectrolytes and nanoparticles. Polymer Journal, 2011, 43, 966-970.	1.3	10

#	Article	IF	CITATIONS
217	Influence of Anion Exchange in Self-Assembling of Polymeric Ionic Liquid Block Copolymers. Macromolecules, 2011, 44, 4936-4941.	2.2	50
218	Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification. Proceedings of SPIE, 2011, , .	0.8	4
219	Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011, 196, 9719-9730.	4.0	132
220	Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36, 1629-1648.	11.8	1,061
221	Synthesis and electroâ€optical characterization of new conducting PEDOT/Auâ€nanorods nanocomposites. Polymers for Advanced Technologies, 2011, 22, 1665-1672.	1.6	5
222	LENS (lithography enhancement toward nano scale): a European project to support double exposure and double patterning technology development. Proceedings of SPIE, 2010, , .	0.8	0
223	Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 2010, 195, 3668-3675.	4.0	282
224	Chemical sensing based on the plasmonic response of nanoparticle aggregation: anion sensing in nanoparticles stabilized by amino-functional ionic liquid. Frontiers of Physics in China, 2010, 5, 330-336.	1.0	11
225	Parylene nanocomposites using modified magnetic nanoparticles. Materials Chemistry and Physics, 2010, 124, 780-784.	2.0	10
226	Tuning the Properties of Functional Pyrrolidinium Polymers by (Co)polymerization of Diallyldimethylammonium Ionic Liquids. Macromolecular Rapid Communications, 2010, 31, 1646-1651.	2.0	32
227	Design and stabilization of block copolymer micelles via phenol–pyridine hydrogen-bonding interactions. Polymer, 2010, 51, 1355-1362.	1.8	14
228	Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells. Electrochimica Acta, 2010, 56, 42-46.	2.6	43
229	Electrochemical synthesis of poly(3,4â€ethylenedioxythiophene) nanotube arrays using ZnO templates. Journal of Polymer Science Part A, 2010, 48, 4648-4653.	2.5	51
230	Au Based Nanocomposites Towards Plasmonic Applications. , 2010, , .		1
231	Oxireductases in the Enzymatic Synthesis of Water-Soluble Conducting Polymers. Advances in Polymer Science, 2010, , 1-19.	0.4	13
232	Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. Applied Physics Letters, 2010, 96, 043308.	1.5	66
233	Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. Journal of Materials Chemistry, 2010, 20, 7613.	6.7	41
234	Protein patterning on the micro- and nanoscale by thermal nanoimprint lithography on a new functionalized copolymer. Journal of Vacuum Science & Technology B, 2009, 27, 2439-2443.	1.3	8

#	Article	IF	CITATIONS
235	SYNTHESIS OF FULLEROPYRROLIDINE PYRIDINIUM SALTS BY FACILE ANION EXCHANGE AND THEIR SOLUBILITY. Nano, 2009, 04, 299-302.	0.5	0
236	Multiresponsive PEDOT–Ionic Liquid Materials for the Design of Surfaces with Switchable Wettability. Advanced Functional Materials, 2009, 19, 3326-3333.	7.8	73
237	Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. Journal of Power Sources, 2009, 188, 558-563.	4.0	255
238	One-step growth of gold nanorods using a β-diketone reducing agent. Journal of Nanoparticle Research, 2009, 11, 1241-1245.	0.8	15
239	Enzymatic synthesis of waterâ€ s oluble conducting poly(3,4â€ e thylenedioxythiophene): A simple enzyme immobilization strategy for recycling and reusing. Journal of Polymer Science Part A, 2009, 47, 306-309.	2.5	24
240	Electrochemical synthesis of PEDOT derivatives bearing imidazoliumâ€ i onic liquid moieties. Journal of Polymer Science Part A, 2009, 47, 3010-3021.	2.5	47
241	Electrochemical deposition of ZnO in a room temperature ionic liquid: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide. Electrochemistry Communications, 2009, 11, 2184-2186.	2.3	48
242	Irreversible Thermochromic Behavior in Gold and Silver Nanorod/Polymeric Ionic Liquid Nanocomposite Films. ACS Applied Materials & Interfaces, 2009, 1, 348-352.	4.0	54
243	Polymeric Vesicles and Micelles Obtained by Self-Assembly of Ionic Liquid-Based Block Copolymers Triggered by Anion or Solvent Exchange. Macromolecules, 2009, 42, 5167-5174.	2.2	94
244	Enhanced photoluminescence from metals and nanoimprinted photonic crystals. , 2009, , .		0
245	Nanoimprint lithography and surface modification as prospective technologies for heterogeneous integration. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3571-3575.	0.8	4
246	PEDOT:Poly(1â€vinylâ€3â€ethylimidazolium) dispersions as alternative materials for optoelectronic devices. Journal of Polymer Science Part A, 2008, 46, 3150-3154.	2.5	31
247	Simultaneous synthesis of gold nanoparticles and conducting poly(3,4â€ethylenedioxythiophene) towards optoelectronic nanocomposites. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1451-1454.	0.8	22
248	Tuning Surface Wettability of Poly(3â€sulfopropyl methacrylate) Brushes by Cationic Surfactantâ€Driven Interactions. Macromolecular Rapid Communications, 2008, 29, 871-875.	2.0	36
249	All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR. Solar Energy Materials and Solar Cells, 2008, 92, 101-106.	3.0	71
250	TiO ₂ nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material. Nanotechnology, 2008, 19, 205705.	1.3	57
251	A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. Journal of Materials Chemistry, 2008, 18, 5354.	6.7	61
252	Synthesis by RAFT and Ionic Responsiveness of Double Hydrophilic Block Copolymers Based on Ionic Liquid Monomer Units. Macromolecules, 2008, 41, 6299-6308.	2.2	185

#	Article	IF	CITATIONS
253	Ion-Specific and Reversible Wetting of Imidazolium-Based Minigels. Journal of Physical Chemistry B, 2008, 112, 10815-10820.	1.2	1
254	Nanoimprinted photonic component for light extraction applications. , 2007, , .		0
255	Combined Electrochromic and Plasmonic Optical Responses in Conducting Polymer/Metal Nanoparticle Films. Journal of Nanoscience and Nanotechnology, 2007, 7, 2938-2941.	0.9	59
256	Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. Nanotechnology, 2007, 18, 215301.	1.3	19
257	NEW AMINE FUNCTIONAL IONIC LIQUID AS BUILDING BLOCK IN NANOTECHNOLOGY. Nano, 2007, 02, 169-173.	0.5	24
258	First Enzymatic Synthesis of Water-Soluble Conducting Poly(3,4-ethylenedioxythiophene). Biomacromolecules, 2007, 8, 315-317.	2.6	74
259	Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chemistry of Materials, 2007, 19, 2147-2149.	3.2	240
260	Structure and Properties of a Semifluorinated Diblock Copolymer Modified Epoxy Blend. Macromolecules, 2007, 40, 4068-4074.	2.2	88
261	Curing Behavior and Final Properties of Nanostructured Thermosetting Systems Modified with Epoxidized Styreneâ€Butadiene Linear Diblock Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 2281-2292.	1.1	92
262	A new bifunctional template for the enzymatic synthesis of conducting polyaniline. Enzyme and Microbial Technology, 2007, 40, 1412-1421.	1.6	41
263	Nanoimprinted photonic crystals for the modification of the (CdSe)ZnS nanocrystals light emission. Microelectronic Engineering, 2007, 84, 1574-1577.	1.1	19
264	Nanocrystal-Based Luminescent Composites for Nanoimprinting Lithography. Small, 2007, 3, 822-828.	5.2	55
265	Ionic Liquid Immobilized Enzyme for Biocatalytic Synthesis of Conducting Polyaniline. Macromolecules, 2006, 39, 8547-8549.	2.2	62
266	Nanostructured Thermosetting Systems by Modification with Epoxidized Styreneâ^'Butadiene Star Block Copolymers. Effect of Epoxidation Degree. Macromolecules, 2006, 39, 2254-2261.	2.2	136
267	Use of polymeric ionic liquids as stabilizers in the synthesis of polypyrrole organic dispersions. Synthetic Metals, 2006, 156, 1133-1138.	2.1	25
268	Hybrid Proton-Conducting Membranes as Fuel Cells Solid Polyelectrolytes. Journal of Fuel Cell Science and Technology, 2006, 3, 308-311.	0.8	2
269	Nano-Objects on a Round Trip from Water to Organics in a Polymeric Ionic Liquid Vehicle. Small, 2006, 2, 507-512.	5.2	131
270	Synthesis and characterization of new polymeric ionic liquid microgels. Journal of Polymer Science Part A, 2006, 44, 3958-3965.	2.5	119

#	Article	IF	CITATIONS
271	Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochemistry Communications, 2006, 8, 482-488.	2.3	193
272	Enzymatic polyester synthesis in ionic liquids. European Polymer Journal, 2006, 42, 1215-1221.	2.6	92
273	Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosensors and Bioelectronics, 2006, 21, 2320-2328.	5.3	91
274	Synthesis of aromatic amine end-functional poly(methyl methacrylate) by atom-transfer radical polymerisation. Reactive and Functional Polymers, 2006, 66, 1073-1080.	2.0	17
275	Influence of the molecular weight and imprint conditions on the formation of capillary bridges in nanoimprint lithography. Nanotechnology, 2006, 17, 4082-4087.	1.3	30
276	Variable optical attenuator made by using new electrochromic devices. , 2005, , .		0
277	Solvent and acidification method effects in the performance of new sulfonated copolyimides membranes in PEM-fuel cells. Journal of Power Sources, 2005, 151, 63-68.	4.0	11
278	Synthesis and characterization of semiconducting polypyrrole/polyacrylamide microparticles with GOx for biosensor applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 239-244.	2.3	32
279	Synthesis of Novel Polycations Using the Chemistry of Ionic Liquids. Macromolecular Chemistry and Physics, 2005, 206, 299-304.	1.1	154
280	Nanostructured Thermosetting Systems from Epoxidized Styrene Butadiene Block Copolymers. Macromolecular Rapid Communications, 2005, 26, 982-985.	2.0	87
281	New Organic Dispersions of Conducting Polymers Using Polymeric Ionic Liquids as Stabilizers. Macromolecular Rapid Communications, 2005, 26, 1122-1126.	2.0	66
282	Phase Separation Behavior of Poly(methyl methacrylate-co-dimethylaminoethyl methacrylate)/Methyl Silsesquioxane Hybrid Nanocomposites Studied by Dansyl Fluorescence. Chemistry of Materials, 2005, 17, 1521-1528.	3.2	9
283	Characterization of novel all-plastic electrochromic devices: electro-optic and voltammetric response. Optical Engineering, 2004, 43, 2967.	0.5	9
284	Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. Journal of Polymer Science Part A, 2004, 42, 208-212.	2.5	318
285	Synthesis and Characterization of Epoxidized Styrene-Butadiene Block Copolymers as Templates for Nanostructured Thermosets. Macromolecular Chemistry and Physics, 2004, 205, 987-996.	1.1	62
286	A simplified all-polymer flexible electrochromic device. Electrochimica Acta, 2004, 49, 3555-3559.	2.6	154
287	Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 2004, 20, 1111-1117.	5.3	79
288	Porous Polybenzimidazole Membranes Doped with Phosphoric Acid:Â Highly Proton-Conducting Solid Electrolytes. Chemistry of Materials, 2004, 16, 604-607.	3.2	184

#	Article	IF	CITATIONS
289	Structural study of poly (N-isopropylacrylamide) microgels interpenetrated with polypyrrole. Physical Chemistry Chemical Physics, 2004, 6, 1396-1400.	1.3	29
290	Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications: Comparison of Modulated Differential Scanning Calorimetry and Fluorescence Spectroscopy. Macromolecules, 2003, 36, 7661-7671.	2.2	43
291	Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Applied Physics Letters, 2002, 81, 2232-2234.	1.5	76
292	Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	0
293	Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synthetic Metals, 2002, 126, 173-178.	2.1	64
294	Chemical oxidative polymerization of pyrrole in the presence of m-hydroxybenzoic acid- and m-hydroxycinnamic acid-related compounds. Synthetic Metals, 2002, 126, 111-116.	2.1	46
295	Low Surface Energy Conducting Polypyrrole Doped with a Fluorinated Counterion. Advanced Materials, 2002, 14, 749.	11.1	65
296	A Novel Approach to Functionalized Nanoparticles: Self-Crosslinking of Macromolecules in Ultradilute Solution. Advanced Materials, 2001, 13, 204-208.	11.1	186
297	Application of Hyperbranched Block Copolymers as Templates for the Generation of Nanoporous Organosilicates. High Performance Polymers, 2001, 13, S11-S19.	0.8	24
298	Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: Novel biodegradable copolymers containing allyl pendent groups. , 2000, 38, 870-875.		67
299	First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromolecular Rapid Communications, 2000, 21, 779-784.	2.0	61
300	Ring-Opening Polymerization of γ-Bromo-ε-caprolactone: A Novel Route to Functionalized Aliphatic Polyesters. Macromolecules, 2000, 33, 14-18.	2.2	85
301	New Functional Aliphatic Polyesters by Chemical Modification of Copolymers of ε-Caprolactone with γ-(2-Bromo-2-methylpropionate)-ε-caprolactone, γ-Bromo-ε-caprolactone, and a Mixture of β- and γ-Ene-ε-caprolactone. Macromolecules, 2000, 33, 7751-7760.	2.2	72
302	Hydrophilic Aliphatic Polyesters:Â Design, Synthesis, and Ring-Opening Polymerization of Functional Cyclic Esters. Macromolecules, 2000, 33, 4619-4627.	2.2	174
303	Novel Pyrrole End-Functional Macromonomers Prepared by Ring-Opening and Atom-Transfer Radical Polymerizations. Macromolecules, 2000, 33, 5846-5849.	2.2	52
304	Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules, 2000, 33, 597-605.	2.2	392
305	Novel Macromolecular Architectures Based on Aliphatic Polyesters: Relevance of the "Coordination-Insertion―Ring-Opening Polymerization. , 1999, , 1-59.		237
306	Synthesis of dendritic-linear block copolymers by living ring-opening polymerization of lactones and lactides using dendritic initiators. , 1999, 37, 1923-1930.		38

#	Article	IF	CITATIONS
307	Ring-opening metathesis polymerization of new ?-norbornenyl poly(?-caprolactone) macromonomers. , 1999, 37, 2447-2455.		54
308	Surface-Initiated Polymerization for Amplification of Self-Assembled Monolayers Patterned by Microcontact Printing. Angewandte Chemie - International Edition, 1999, 38, 647-649.	7.2	233
309	Synthesis of well-defined poly(alkyl methacrylate)-graft-polylactone by sequential living polymerization. Macromolecular Chemistry and Physics, 1999, 200, 156-165.	1.1	21
310	From living to controlled aluminium alkoxide mediated ring-opening polymerization of (di)lactones, a powerful tool for the macromolecular engineering of aliphatic polyesters. Macromolecular Chemistry and Physics, 1999, 200, 2581-2590.	1.1	48
311	Controlled Synthesis of Polymer Brushes by "Living―Free Radical Polymerization Techniques. Macromolecules, 1999, 32, 1424-1431.	2.2	888
312	Unimolecular Combination of an Atom Transfer Radical Polymerization Initiator and a Lactone Monomer as a Route to New Graft Copolymers. Macromolecules, 1999, 32, 5175-5182.	2.2	137
313	ABC BCD Polymerization:Â A Self-Condensing Vinyl and Cyclic Ester Polymerization by Combination Free-Radical and Ring-Opening Techniques. Macromolecules, 1999, 32, 8753-8759.	2.2	38
314	Surface-Initiated Polymerization for Amplification of Self-Assembled Monolayers Patterned by Microcontact Printing. , 1999, 38, 647.		1
315	Internal functionalization in hyperbranched polyesters. , 1998, 36, 3187-3192.		25
316	Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. Angewandte Chemie - International Edition, 1998, 37, 1274-1276.	7.2	205
317	Synthesis of poly(norbornene-g-ε-caprolactone) copolymers by sequential controlled ring opening polymerization. Polymer Bulletin, 1998, 40, 631-638.	1.7	15
318	Block and random copolymers of Îμ-caprolactone. Polymer Degradation and Stability, 1998, 59, 215-222.	2.7	97
319	Polyimide Nanofoams from Aliphatic Polyester-Based Copolymers. Chemistry of Materials, 1998, 10, 39-49.	3.2	61
320	Highly Functional Branched and Dendri-Graft Aliphatic Polyesters through Ring Opening Polymerization. Macromolecules, 1998, 31, 2756-2763.	2.2	77
321	Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator. Macromolecules, 1998, 31, 213-219.	2.2	197
322	Dendrimer-like Star Block and Amphiphilic Copolymers by Combination of Ring Opening and Atom Transfer Radical Polymerization. Macromolecules, 1998, 31, 8691-8705.	2.2	298
323	Synthesis of novel polymeric materials based on aliphatic polyesters by combination of different controlled polymerization methods. Macromolecular Symposia, 1998, 132, 385-403.	0.4	8
324	Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. , 1998, 37, 1274.		157

#	Article	IF	CITATIONS
325	Versatile and Controlled Synthesis of Star and Branched Macromolecules by Dentritic Initiation. Macromolecules, 1997, 30, 8508-8511.	2.2	93
326	"Living―free radical polymerization of macromonomers: Preparation of well defined graft copolymers. Macromolecular Chemistry and Physics, 1997, 198, 155-166.	1.1	116
327	Polyimide Nanofoams from Caprolactone-Based Copolymers. Macromolecules, 1996, 29, 3642-3646.	2.2	38
328	Nanoporous Polyimide Films from Polyimide-Aliphatic Polyester or Polyimide-Aliphatic Polycarbonate Copolymers. Materials Research Society Symposia Proceedings, 1996, 431, 487.	0.1	4
329	High-temperature polyimide nanofoams for microelectronic applications. Reactive and Functional Polymers, 1996, 30, 43-53.	2.0	52
330	Oligomerization and copolymerization of γ-butyrolactone — a monomer known as unable to homopolymerize, 1. Copolymerization with É≻caprolactone. Macromolecular Chemistry and Physics, 1996, 197, 1273-1283.	1.1	73
331	Aging effect of Catechol Redox Polymer Nanoparticles for Hybrid Supercapacitors. Batteries and Supercaps, 0, , .	2.4	1