
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772288/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rhodopsin dimers in native disc membranes. Nature, 2003, 421, 127-128.                                                                                                                                            | 27.8 | 732       |
| 2  | G Protein–Coupled Receptor Rhodopsin. Annual Review of Biochemistry, 2006, 75, 743-767.                                                                                                                           | 11.1 | 663       |
| 3  | Advances in Determination of a High-Resolution Three-Dimensional Structure of Rhodopsin, a Model<br>of G-Protein-Coupled Receptors (GPCRs)â€,â€j. Biochemistry, 2001, 40, 7761-7772.                              | 2.5  | 627       |
| 4  | Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes. Journal of Biological Chemistry, 2003, 278, 21655-21662.                                                                 | 3.4  | 534       |
| 5  | Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron, 1994, 13, 395-404.                                                                                   | 8.1  | 449       |
| 6  | Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16123-16128.                            | 7.1  | 431       |
| 7  | Long-Term Restoration of Rod and Cone Vision by Single Dose rAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness. Molecular Therapy, 2005, 12, 1072-1082.                           | 8.2  | 421       |
| 8  | Activation of rhodopsin: new insights from structural and biochemical studies. Trends in Biochemical Sciences, 2001, 26, 318-324.                                                                                 | 7.5  | 403       |
| 9  | Diseases Caused by Defects in the Visual Cycle: Retinoids as Potential Therapeutic Agents. Annual<br>Review of Pharmacology and Toxicology, 2007, 47, 469-512.                                                    | 9.4  | 365       |
| 10 | Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42,<br>2759-2767.                                                                                              | 2.5  | 339       |
| 11 | Phagocytosis of Retinal Rod and Cone Photoreceptors. Physiology, 2010, 25, 8-15.                                                                                                                                  | 3.1  | 339       |
| 12 | Confronting Complexity: the Interlink of Phototransduction and Retinoid Metabolism in the<br>Vertebrate Retina. Progress in Retinal and Eye Research, 2001, 20, 469-529.                                          | 15.5 | 334       |
| 13 | Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2290-2295.           | 7.1  | 334       |
| 14 | Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye<br>and in the Liver. Journal of Biological Chemistry, 2004, 279, 10422-10432.                               | 3.4  | 321       |
| 15 | Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends in Neurosciences, 1996, 19, 547-554.                                                                               | 8.6  | 287       |
| 16 | Chemistry of the Retinoid (Visual) Cycle. Chemical Reviews, 2014, 114, 194-232.                                                                                                                                   | 47.7 | 285       |
| 17 | International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition<br>and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007,<br>59, 5-13. | 16.0 | 274       |
| 18 | Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature Neuroscience, 2004, 7, 1079-1087.                                                                | 14.8 | 272       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local<br>inflammation in the retina. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 16586-16591. | 7.1  | 261       |
| 20 | A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB Journal, 2011, 25, 948-959.                                                                                                                 | 0.5  | 259       |
| 21 | Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry, 1993, 32, 5718-5724.                                                                                                                                        | 2.5  | 256       |
| 22 | Retinoid Absorption and Storage Is Impaired in Mice Lacking Lecithin:Retinol Acyltransferase (LRAT).<br>Journal of Biological Chemistry, 2005, 280, 35647-35657.                                                                     | 3.4  | 256       |
| 23 | Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Current Opinion in Structural Biology, 2006, 16, 252-259.                                                                                         | 5.7  | 253       |
| 24 | Engineered virus-like particles for efficient inÂvivo delivery of therapeutic proteins. Cell, 2022, 185, 250-265.e16.                                                                                                                | 28.9 | 251       |
| 25 | Retinopathy in Mice Induced by Disrupted All-trans-retinal Clearance. Journal of Biological Chemistry, 2008, 283, 26684-26693.                                                                                                       | 3.4  | 250       |
| 26 | Identifying photoreceptors in blind eyes caused by <i>RPE65</i> mutations: Prerequisite for human<br>gene therapy success. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 6177-6182. | 7.1  | 249       |
| 27 | Chemistry and Biology of Vision. Journal of Biological Chemistry, 2012, 287, 1612-1619.                                                                                                                                              | 3.4  | 238       |
| 28 | G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879.                                                                                                                                  | 13.1 | 237       |
| 29 | Efficient Coupling of Transducin to Monomeric Rhodopsin in a Phospholipid Bilayer. Journal of<br>Biological Chemistry, 2008, 283, 4387-4394.                                                                                         | 3.4  | 233       |
| 30 | Anti-rhodopsin monoclonal antibodies of defined specificity: Characterization and application. Vision Research, 1991, 31, 17-31.                                                                                                     | 1.4  | 225       |
| 31 | Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of<br>Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations. Journal of Biological<br>Chemistry, 2011, 286, 10551-10567.      | 3.4  | 221       |
| 32 | Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G<br>protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 8555-8560. | 7.1  | 218       |
| 33 | Oligomerization of G Protein-Coupled Receptors: Past, Present, and Futureâ€. Biochemistry, 2004, 43, 15643-15656.                                                                                                                    | 2.5  | 213       |
| 34 | Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice. Journal of Biological<br>Chemistry, 2009, 284, 15173-15183.                                                                                             | 3.4  | 209       |
| 35 | Guanylyl Cyclase Activating Protein. Journal of Biological Chemistry, 1995, 270, 22029-22036.                                                                                                                                        | 3.4  | 201       |
| 36 | Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.                                                                                | 12.8 | 197       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters, 2004, 564, 281-288.                                                                                                                    | 2.8  | 196       |
| 38 | The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmacological Reviews, 2011, 63, 901-937.                                                                                        | 16.0 | 195       |
| 39 | Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. Journal of Cell<br>Biology, 2004, 164, 373-383.                                                                                   | 5.2  | 192       |
| 40 | Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. Journal of Cell Biology, 2007, 177, 917-925.                                                                       | 5.2  | 192       |
| 41 | Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant<br>Associated with Autosomal Dominant Retinitis Pigmentosa. Journal of Biological Chemistry, 2003, 278,<br>14442-14450. | 3.4  | 183       |
| 42 | Mechanism of All-trans-retinal Toxicity with Implications for Stargardt Disease and Age-related<br>Macular Degeneration. Journal of Biological Chemistry, 2012, 287, 5059-5069.                                       | 3.4  | 182       |
| 43 | Rod Outer Segment Retinol Dehydrogenase: Substrate Specificity and Role in Phototransduction.<br>Biochemistry, 1994, 33, 13741-13750.                                                                                 | 2.5  | 181       |
| 44 | Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.<br>Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>14367-14372.             | 7.1  | 181       |
| 45 | Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. Journal of<br>Biological Chemistry, 2002, 277, 45537-45546.                                                                 | 3.4  | 179       |
| 46 | X-Ray Diffraction Analysis of Three-Dimensional Crystals of Bovine Rhodopsin Obtained from Mixed<br>Micelles. Journal of Structural Biology, 2000, 130, 73-80.                                                        | 2.8  | 176       |
| 47 | Structure of cone photoreceptors. Progress in Retinal and Eye Research, 2009, 28, 289-302.                                                                                                                            | 15.5 | 176       |
| 48 | Phototransduction: crystal clear. Trends in Biochemical Sciences, 2003, 28, 479-487.                                                                                                                                  | 7.5  | 163       |
| 49 | A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochemical and Photobiological Sciences, 2004, 3, 628.                                                | 2.9  | 163       |
| 50 | RBP4 Disrupts Vitamin A Uptake Homeostasis in a STRA6-Deficient Animal Model for Matthew-Wood<br>Syndrome. Cell Metabolism, 2008, 7, 258-268.                                                                         | 16.2 | 163       |
| 51 | ABCA4 disease progression and a proposed strategy for gene therapy. Human Molecular Genetics, 2009, 18, 931-941.                                                                                                      | 2.9  | 163       |
| 52 | Rhodopsin Phosphorylation and Dephosphorylation in Vivo. Journal of Biological Chemistry, 1995, 270,<br>14259-14262.                                                                                                  | 3.4  | 154       |
| 53 | The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and Role in Retinal Disease. Advances in Experimental Medicine and Biology, 2010, 703, 105-125.                                      | 1.6  | 151       |
| 54 | GCAP1(Y99C) Mutant Is Constitutively Active in Autosomal Dominant Cone Dystrophy. Molecular Cell,<br>1998, 2, 129-133.                                                                                                | 9.7  | 150       |

4

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ca2+-binding proteins in the retina: Structure, function, and the etiology of human visual diseases.<br>BioEssays, 2000, 22, 337-350.                                                                                           | 2.5  | 149       |
| 56 | Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration<br>Mediated by All-trans-retinal. Journal of Biological Chemistry, 2013, 288, 15326-15341.                               | 3.4  | 149       |
| 57 | Kinetics of Visual Pigment Regeneration in Excised Mouse Eyes and in Mice with a Targeted Disruption<br>of the Gene Encoding Interphotoreceptor Retinoid-Binding Protein or Arrestinâ€. Biochemistry, 1999,<br>38, 12012-12019. | 2.5  | 146       |
| 58 | Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. Trends in<br>Plant Science, 2005, 10, 178-186.                                                                                        | 8.8  | 145       |
| 59 | Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases. Journal of Biological Chemistry, 1999, 274, 19329-19337.                                | 3.4  | 143       |
| 60 | Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochimica Et Biophysica Acta -<br>Molecular and Cell Biology of Lipids, 2012, 1821, 137-151.                                                                  | 2.4  | 141       |
| 61 | Opsin/all-trans-Retinal Complex Activates Transducin by Different Mechanisms Than Photolyzed<br>Rhodopsinâ€. Biochemistry, 1996, 35, 2901-2908.                                                                                 | 2.5  | 140       |
| 62 | Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17325-17330.                                         | 7.1  | 140       |
| 63 | Role of Photoreceptor-specific Retinol Dehydrogenase in the Retinoid Cycle in Vivo. Journal of<br>Biological Chemistry, 2005, 280, 18822-18832.                                                                                 | 3.4  | 139       |
| 64 | Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis. Journal of Biological<br>Chemistry, 2002, 277, 19173-19182.                                                                                        | 3.4  | 138       |
| 65 | Rhodopsin phosphorylation: 30 years later. Progress in Retinal and Eye Research, 2003, 22, 417-434.                                                                                                                             | 15.5 | 138       |
| 66 | Rhodopsin Signaling and Organization in Heterozygote Rhodopsin Knockout Mice. Journal of<br>Biological Chemistry, 2004, 279, 48189-48196.                                                                                       | 3.4  | 138       |
| 67 | Two Carotenoid Oxygenases Contribute to Mammalian Provitamin A Metabolism. Journal of Biological<br>Chemistry, 2013, 288, 34081-34096.                                                                                          | 3.4  | 137       |
| 68 | A Novel Mutation (I143NT) in Guanylate Cyclase-Activating Protein 1 (GCAP1) Associated with Autosomal Dominant Cone Degeneration. , 2004, 45, 3863.                                                                             |      | 135       |
| 69 | Human cone photoreceptor dependence on RPE65 isomerase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15123-15128.                                                                | 7.1  | 135       |
| 70 | Molecular Characterization of a Third Member of the Guanylyl Cyclase-activating Protein Subfamily.<br>Journal of Biological Chemistry, 1999, 274, 6526-6535.                                                                    | 3.4  | 131       |
| 71 | Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vision Research, 1998, 38, 1325-1333.                                                                                                             | 1.4  | 127       |
| 72 | Functional and Structural Characterization of Rhodopsin Oligomers. Journal of Biological<br>Chemistry, 2006, 281, 11917-11922.                                                                                                  | 3.4  | 125       |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Primary amines protect against retinal degeneration in mouse models of retinopathies. Nature<br>Chemical Biology, 2012, 8, 170-178.                                                                                                    | 8.0  | 125       |
| 74 | Preferential Release of 11-cis-retinol from Retinal Pigment Epithelial Cells in the Presence of Cellular<br>Retinaldehyde-binding Protein. Journal of Biological Chemistry, 1999, 274, 8577-8585.                                      | 3.4  | 122       |
| 75 | Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8162-8167. | 7.1  | 121       |
| 76 | Disruption of the 11- cis -Retinol Dehydrogenase Gene Leads to Accumulation of cis -Retinols and cis<br>-Retinyl Esters. Molecular and Cellular Biology, 2000, 20, 4275-4287.                                                          | 2.3  | 120       |
| 77 | Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber<br>Congenital Amaurosis. PLoS Medicine, 2005, 2, e333.                                                                                | 8.4  | 120       |
| 78 | Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 2013, 539, 203-213.                                                                                                        | 3.0  | 119       |
| 79 | Robust Endoplasmic Reticulum-Associated Degradation of Rhodopsin Precedes Retinal Degeneration.<br>Molecular Neurobiology, 2015, 52, 679-695.                                                                                          | 4.0  | 119       |
| 80 | Functional Characterization of Rhodopsin Monomers and Dimers in Detergents. Journal of Biological Chemistry, 2004, 279, 54663-54675.                                                                                                   | 3.4  | 118       |
| 81 | Activation of G Protein–Coupled Receptors: Beyond Two-State Models and Tertiary Conformational<br>Changes. Annual Review of Pharmacology and Toxicology, 2008, 48, 107-141.                                                            | 9.4  | 118       |
| 82 | Structural and Enzymatic Aspects of Rhodopsin Phosphorylation. Journal of Biological Chemistry, 1996, 271, 5215-5224.                                                                                                                  | 3.4  | 117       |
| 83 | The Crystallographic Model of Rhodopsin and Its Use in Studies of Other G Protein–Coupled Receptors. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 375-397.                                                        | 18.3 | 116       |
| 84 | Stabilizing Function for Myristoyl Group Revealed by the Crystal Structure of a Neuronal Calcium Sensor, Guanylate Cyclase-Activating Protein 1. Structure, 2007, 15, 1392-1402.                                                       | 3.3  | 113       |
| 85 | Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina. Journal of Biological Chemistry, 2011, 286, 31749-31760.                              | 3.4  | 111       |
| 86 | Retinoids for treatment of retinal diseases. Trends in Pharmacological Sciences, 2010, 31, 284-295.                                                                                                                                    | 8.7  | 110       |
| 87 | Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nature Medicine, 2014, 20, 785-789.                                                                             | 30.7 | 108       |
| 88 | Ligand Channeling within a G-protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 24896-24903.                                                                                                                        | 3.4  | 107       |
| 89 | The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends in Biochemical Sciences, 2010, 35, 400-410.                                                                        | 7.5  | 105       |
| 90 | Mechanisms of Opsin Activation. Journal of Biological Chemistry, 1996, 271, 20621-20630.                                                                                                                                               | 3.4  | 104       |

| #   | Article                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | GTP-Binding-Protein-Coupled Receptor Kinases Two Mechanistic Models. FEBS Journal, 1997, 248, 261-269.                                                                                                                                                                                               | 0.2  | 103       |
| 92  | Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19565-19570.                                                                                                                   | 7.1  | 103       |
| 93  | Signaling States of Rhodopsin. Journal of Biological Chemistry, 2003, 278, 3162-3169.                                                                                                                                                                                                                | 3.4  | 101       |
| 94  | Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors. Molecular Pharmacology, 2009, 75, 1-12.                                                                                                                  | 2.3  | 101       |
| 95  | Guanylate cyclase-activating proteins: structure, function, and diversity. Biochemical and Biophysical Research Communications, 2004, 322, 1123-1130.                                                                                                                                                | 2.1  | 100       |
| 96  | Visual Rhodopsin Sees the Light: Structure and Mechanism of G Protein Signaling. Journal of<br>Biological Chemistry, 2007, 282, 9297-9301.                                                                                                                                                           | 3.4  | 100       |
| 97  | Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man. Visual Neuroscience, 2000, 17, 667-678.                                                                                                                                                   | 1.0  | 99        |
| 98  | P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Human Molecular<br>Genetics, 2014, 23, 1723-1741.                                                                                                                                                                    | 2.9  | 99        |
| 99  | Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three<br>Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs<br>(GCAP1-8) in Pufferfish (Fugu rubripes). Journal of Molecular Evolution, 2004, 59, 204-217. | 1.8  | 98        |
| 100 | Retinol Dehydrogenase (RDH12) Protects Photoreceptors from Light-induced Degeneration in Mice.<br>Journal of Biological Chemistry, 2006, 281, 37697-37704.                                                                                                                                           | 3.4  | 98        |
| 101 | Trafficking of Membrane-Associated Proteins to Cone Photoreceptor Outer Segments Requires the Chromophore 11- <i>cis</i> -Retinal. Journal of Neuroscience, 2008, 28, 4008-4014.                                                                                                                     | 3.6  | 97        |
| 102 | Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man.<br>European Journal of Neuroscience, 2002, 15, 63-78.                                                                                                                                              | 2.6  | 95        |
| 103 | Functional Differences in the Interaction of Arrestin and Its Splice Variant, p44, with Rhodopsin.<br>Biochemistry, 1997, 36, 9253-9260.                                                                                                                                                             | 2.5  | 94        |
| 104 | Retinosomes. Journal of Cell Biology, 2004, 166, 447-453.                                                                                                                                                                                                                                            | 5.2  | 94        |
| 105 | Impairment of the Transient Pupillary Light Reflex in <i>Rpe65</i> <sup>â^'/â^'</sup> Mice and Humans with<br>Leber Congenital Amaurosis. , 2004, 45, 1259.                                                                                                                                          |      | 92        |
| 106 | Delayed Dark Adaptation in 11-cis-Retinol Dehydrogenase-deficient Mice. Journal of Biological<br>Chemistry, 2005, 280, 8694-8704.                                                                                                                                                                    | 3.4  | 92        |
| 107 | Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches.<br>Pharmacological Reviews, 2008, 60, 43-78.                                                                                                                                                            | 16.0 | 92        |
| 108 | STRA6 is critical for cellular vitamin A uptake and homeostasis. Human Molecular Genetics, 2014, 23, 5402-5417.                                                                                                                                                                                      | 2.9  | 92        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Isomerization of all-trans-Retinol to cis-Retinols in Bovine Retinal Pigment Epithelial Cells:<br>Dependence on the Specificity of Retinoid-Binding Proteins. Biochemistry, 2000, 39, 11370-11380.  | 2.5  | 91        |
| 110 | Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing.<br>Nature Biomedical Engineering, 2021, 5, 169-178.                                        | 22.5 | 90        |
| 111 | Changes in Biological Activity and Folding of Guanylate Cyclase-Activating Protein 1 as a Function of Calciumâ€. Biochemistry, 1998, 37, 248-257.                                                   | 2.5  | 89        |
| 112 | Rhodopsin self-associates in asolectin liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3060-3065.                                            | 7.1  | 89        |
| 113 | Oligomeric forms of G protein-coupled receptors (GPCRs). Trends in Biochemical Sciences, 2010, 35, 595-600.                                                                                         | 7.5  | 88        |
| 114 | The catalytic subunit of phosphatase 2A dephosphorylates phosphoopsin. Biochemistry, 1989, 28,<br>415-419.                                                                                          | 2.5  | 87        |
| 115 | Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy.<br>Biomedical Optics Express, 2011, 2, 139.                                                        | 2.9  | 87        |
| 116 | Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Science, 1994, 3, 2428-2434.                                                       | 7.6  | 86        |
| 117 | Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G<br>Protein-coupled Receptor Kinase Activation. Journal of Biological Chemistry, 2008, 283, 14053-14062. | 3.4  | 85        |
| 118 | Metabolic Basis of Visual Cycle Inhibition by Retinoid and Nonretinoid Compounds in the Vertebrate<br>Retina. Journal of Biological Chemistry, 2008, 283, 9543-9554.                                | 3.4  | 85        |
| 119 | Retinoids and Retinal Diseases. Annual Review of Vision Science, 2016, 2, 197-234.                                                                                                                  | 4.4  | 85        |
| 120 | Structure and functions of arrestins. Protein Science, 1994, 3, 1355-1361.                                                                                                                          | 7.6  | 83        |
| 121 | Functional Reconstitution of Photoreceptor Guanylate Cyclase with Native and Mutant Forms of Guanylate Cyclase-Activating Protein 1. Biochemistry, 1997, 36, 4295-4302.                             | 2.5  | 83        |
| 122 | Effects of Potent Inhibitors of the Retinoid Cycle on Visual Function and Photoreceptor Protection from Light Damage in Mice. Molecular Pharmacology, 2006, 70, 1220-1229.                          | 2.3  | 82        |
| 123 | Lecithin:Retinol Acyltransferase Is Critical for Cellular Uptake of Vitamin A from Serum<br>Retinol-binding Protein. Journal of Biological Chemistry, 2012, 287, 24216-24227.                       | 3.4  | 82        |
| 124 | Evaluation of the role of the retinal G proteinâ€coupled receptor (RGR) in the vertebrate retina <i>in vivo</i> . Journal of Neurochemistry, 2003, 85, 944-956.                                     | 3.9  | 80        |
| 125 | Lentiviral Expression of Retinal Guanylate Cyclase-1 (RetGC1) Restores Vision in an Avian Model of<br>Childhood Blindness. PLoS Medicine, 2006, 3, e201.                                            | 8.4  | 80        |
| 126 | Human infrared vision is triggered by two-photon chromophore isomerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5445-54.                   | 7.1  | 80        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Delivery of Retinoid-Based Therapies To Target Tissues. Biochemistry, 2007, 46, 4449-4458.                                                                                                                         | 2.5  | 79        |
| 128 | Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes. Nature Medicine, 2010, 16, 1444-1449.                                                            | 30.7 | 78        |
| 129 | Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Human Molecular Genetics, 2009, 18, 2277-2287.                   | 2.9  | 77        |
| 130 | Limited Roles of Rdh8, Rdh12, and Abca4 in all- <i>trans</i> -Retinal Clearance in Mouse Retina. , 2009, 50, 5435.                                                                                                 |      | 77        |
| 131 | Defective photoreceptor phagocytosis in a mouse model of enhanced Sâ€cone syndrome causes progressive retinal degeneration. FASEB Journal, 2011, 25, 3157-3176.                                                    | 0.5  | 76        |
| 132 | In vivo two-photon imaging of the mouse retina. Biomedical Optics Express, 2013, 4, 1285.                                                                                                                          | 2.9  | 76        |
| 133 | The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes.<br>Molecular Membrane Biology, 2004, 21, 435-446.                                                                        | 2.0  | 75        |
| 134 | GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.                                                                                                             | 4.1  | 74        |
| 135 | Activation and inactivation steps in the visual transduction pathway. Current Opinion in Neurobiology, 1997, 7, 500-504.                                                                                           | 4.2  | 73        |
| 136 | Retinyl Ester Storage Particles (Retinosomes) from the Retinal Pigmented Epithelium Resemble Lipid<br>Droplets in Other Tissues. Journal of Biological Chemistry, 2011, 286, 17248-17258.                          | 3.4  | 73        |
| 137 | Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess<br>Functional Visual Cycle Enzymes in Vitro and in Vivo. Journal of Biological Chemistry, 2013, 288,<br>34484-34493. | 3.4  | 73        |
| 138 | Detecting Molecular Interactions that Stabilize Native Bovine Rhodopsin. Journal of Molecular<br>Biology, 2006, 358, 255-269.                                                                                      | 4.2  | 71        |
| 139 | Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface.<br>Journal of Biological Chemistry, 2015, 290, 25728-25744.                                                       | 3.4  | 71        |
| 140 | Systems pharmacology identifies drug targets for Stargardt disease–associated retinal degeneration.<br>Journal of Clinical Investigation, 2013, 123, 5119-5134.                                                    | 8.2  | 70        |
| 141 | Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Human<br>Molecular Genetics, 2015, 24, 3220-3237.                                                                               | 2.9  | 69        |
| 142 | Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Protein Science, 1994, 3, 314-324.                                                                                       | 7.6  | 68        |
| 143 | Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nature Chemical Biology, 2015, 11, 409-415.                                                                                           | 8.0  | 66        |
| 144 | Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications, 2018, 9, 1996.                                                                   | 12.8 | 65        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Structural Basis for the Acyltransferase Activity of Lecithin:Retinol Acyltransferase-like Proteins.<br>Journal of Biological Chemistry, 2012, 287, 23790-23807.                                                                            | 3.4  | 64        |
| 146 | Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.                                                                                                                      | 3.4  | 64        |
| 147 | Binding of inositol phosphates to arrestin. FEBS Letters, 1991, 295, 195-199.                                                                                                                                                               | 2.8  | 63        |
| 148 | Identification of a Guanylyl Cyclase-Activating Protein-Binding Site within the Catalytic Domain of Retinal Guanylyl Cyclase1. Biochemistry, 1999, 38, 1387-1393.                                                                           | 2.5  | 63        |
| 149 | Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization.<br>Vision Research, 2003, 43, 2959-2981.                                                                                                  | 1.4  | 63        |
| 150 | Conformational Dynamics of Activation for the Pentameric Complex of Dimeric G Protein-Coupled Receptor and Heterotrimeric G Protein. Structure, 2012, 20, 826-840.                                                                          | 3.3  | 63        |
| 151 | Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia, 2017, 60, 2111-2120.                                                                         | 6.3  | 63        |
| 152 | A Novel GCAP1 Missense Mutation (L151F) in a Large Family with Autosomal Dominant Cone-Rod<br>Dystrophy (adCORD). , 2005, 46, 1124.                                                                                                         |      | 61        |
| 153 | Stabilizing Effect of Zn2+ in Native Bovine Rhodopsin. Journal of Biological Chemistry, 2007, 282, 11377-11385.                                                                                                                             | 3.4  | 61        |
| 154 | Inner retinal photoreception independent of the visual retinoid cycle. Proceedings of the National<br>Academy of Sciences of the United States of America, 2006, 103, 10426-10431.                                                          | 7.1  | 60        |
| 155 | Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.<br>Progress in Lipid Research, 2011, 50, 267-277.                                                                                              | 11.6 | 59        |
| 156 | Human aging and disease: Lessons from age-related macular degeneration. Proceedings of the National<br>Academy of Sciences of the United States of America, 2018, 115, 2866-2872.                                                           | 7.1  | 59        |
| 157 | Molecular pharmacodynamics of emixustat in protection against retinal degeneration. Journal of Clinical Investigation, 2015, 125, 2781-2794.                                                                                                | 8.2  | 59        |
| 158 | Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2747-56.                            | 7.1  | 58        |
| 159 | Asymmetry of the rhodopsin dimer in complex with transducin. FASEB Journal, 2013, 27, 1572-1584.                                                                                                                                            | 0.5  | 58        |
| 160 | PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9922-9931. | 7.1  | 58        |
| 161 | A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor. Journal of Biological Chemistry, 2004, 279, 53828-53839.                                              | 3.4  | 57        |
| 162 | Diversifying the repertoire of G protein-coupled receptors through oligomerization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8793-8794.                                                  | 7.1  | 57        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity. Journal of<br>Biological Chemistry, 2010, 285, 9667-9682.                                                                              | 3.4  | 57        |
| 164 | Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1428-37.                      | 7.1  | 57        |
| 165 | Characterization of a Dehydrogenase Activity Responsible for Oxidation of 11-cis-Retinol in the Retinal<br>Pigment Epithelium of Mice with a Disrupted RDH5 Gene. Journal of Biological Chemistry, 2001, 276,<br>32456-32465. | 3.4  | 56        |
| 166 | Lecithin:Retinol Acyltransferase Is Responsible for Amidation of Retinylamine, a Potent Inhibitor of the Retinoid Cycle. Journal of Biological Chemistry, 2005, 280, 42263-42273.                                             | 3.4  | 56        |
| 167 | Toll-like Receptor 3 Is Required for Development of Retinopathy Caused by Impaired All-trans-retinal<br>Clearance in Mice. Journal of Biological Chemistry, 2011, 286, 15543-15555.                                           | 3.4  | 56        |
| 168 | Time-Resolved Fluorescence Spectroscopy Measures Clustering and Mobility of a G Protein-Coupled<br>Receptor Opsin in Live Cell Membranes. Journal of the American Chemical Society, 2014, 136, 8342-8349.                     | 13.7 | 56        |
| 169 | Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye. , 2016, 57, 632.                                                                                             |      | 56        |
| 170 | Membrane-binding and enzymatic properties of RPE65. Progress in Retinal and Eye Research, 2010, 29, 428-442.                                                                                                                  | 15.5 | 55        |
| 171 | Rhodopsin–transducin heteropentamer: Three-dimensional structure and biochemical characterization. Journal of Structural Biology, 2011, 176, 387-394.                                                                         | 2.8  | 55        |
| 172 | Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes. , 2016, 57, 4272.                                                                                           |      | 55        |
| 173 | Inflammatory priming predisposes mice to age-related retinal degeneration. Journal of Clinical Investigation, 2012, 122, 2989-3001.                                                                                           | 8.2  | 55        |
| 174 | The retinoid cycle and retina disease. Vision Research, 2003, 43, 2957-2958.                                                                                                                                                  | 1.4  | 54        |
| 175 | DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB Journal, 2014, 28, 3780-3791.                                                                                                          | 0.5  | 54        |
| 176 | Topology and Membrane Association of Lecithin: Retinol Acyltransferase. Journal of Biological Chemistry, 2007, 282, 2081-2090.                                                                                                | 3.4  | 53        |
| 177 | The physiological impact of microRNA gene regulation in the retina. Cellular and Molecular Life<br>Sciences, 2012, 69, 2739-2750.                                                                                             | 5.4  | 53        |
| 178 | Designing Safer Analgesics via μ-Opioid Receptor Pathways. Trends in Pharmacological Sciences, 2017,<br>38, 1016-1037.                                                                                                        | 8.7  | 53        |
| 179 | Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Visual Neuroscience, 1997, 14, 225-232.                                                                                                       | 1.0  | 52        |
| 180 | Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals.<br>Journal of Structural Biology, 2006, 156, 497-504.                                                                          | 2.8  | 52        |

| #   | Article                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Molecular Organization and ATP-Induced Conformational Changes of ABCA4, the Photoreceptor-Specific ABC Transporter. Structure, 2013, 21, 854-860.                        | 3.3  | 52        |
| 182 | Role of Bulk Water in Hydrolysis of the Rhodopsin Chromophore. Journal of Biological Chemistry, 2011, 286, 18930-18937.                                                  | 3.4  | 51        |
| 183 | Chemistry and Biology of the Initial Steps in Vision: The Friedenwald Lecture. , 2014, 55, 6651.                                                                         |      | 51        |
| 184 | Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.<br>FASEB Journal, 2019, 33, 3680-3692.                                | 0.5  | 51        |
| 185 | Shedding new light on the generation of the visual chromophore. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19629-19638. | 7.1  | 51        |
| 186 | Ca <sup>2+</sup> â€dependent Regulation of Phototransduction <sup>â€</sup> . Photochemistry and<br>Photobiology, 2008, 84, 903-910.                                      | 2.5  | 50        |
| 187 | A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness.<br>IScience, 2018, 4, 1-19.                                           | 4.1  | 50        |
| 188 | Stereoisomeric Specificity of the Retinoid Cycle in the Vertebrate Retina. Journal of Biological Chemistry, 2000, 275, 28128-28138.                                      | 3.4  | 49        |
| 189 | Isomerization of 11-cis- Retinoids to All-trans-retinoids in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 48483-48493.                                 | 3.4  | 49        |
| 190 | Evidence for RPE65â€independent vision in the coneâ€dominated zebrafish retina. European Journal of<br>Neuroscience, 2007, 26, 1940-1949.                                | 2.6  | 49        |
| 191 | LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nature Chemical<br>Biology, 2015, 11, 26-32.                                        | 8.0  | 49        |
| 192 | The Molecular Mechanism of P2Y <sub>1</sub> Receptor Activation. Angewandte Chemie - International Edition, 2016, 55, 10331-10335.                                       | 13.8 | 49        |
| 193 | Inherent Instability of the Retinitis Pigmentosa P23H Mutant Opsin. Journal of Biological Chemistry, 2014, 289, 9288-9303.                                               | 3.4  | 48        |
| 194 | Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 2015, 290,<br>30212-30223.                                                   | 3.4  | 48        |
| 195 | A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.<br>Nature Communications, 2018, 9, 1976.                               | 12.8 | 48        |
| 196 | Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochemical Journal, 2010, 428, 1-10.                                                 | 3.7  | 47        |
| 197 | Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo. Journal of Biological Chemistry, 2012, 287, 20888-20897.                                         | 3.4  | 47        |
| 198 | The Mechanism of Ligandâ€Induced Activation or Inhibition of μ―and κâ€Opioid Receptors. Angewandte<br>Chemie - International Edition, 2015, 54, 7560-7563.               | 13.8 | 47        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Guanylate-cyclase-inhibitory protein is a frog retinal Ca2+-binding protein related to mammalian<br>guanylate-cyclase-activating proteins. FEBS Journal, 1998, 252, 591-599.              | 0.2 | 46        |
| 200 | A Critical Role of CaBP4 in the Cone Synapse. , 2005, 46, 4320.                                                                                                                           |     | 46        |
| 201 | Chemokine receptors and other G protein-coupled receptors. Current Opinion in HIV and AIDS, 2009, 4, 88-95.                                                                               | 3.8 | 46        |
| 202 | Evaluation of Potential Therapies for a Mouse Model of Human Age-Related Macular Degeneration<br>Caused by Delayed all- <i>trans</i> -Retinal Clearance. , 2009, 50, 4917.                |     | 45        |
| 203 | Increased adiposity in the retinol saturaseâ€knockout mouse. FASEB Journal, 2010, 24, 1261-1270.                                                                                          | 0.5 | 45        |
| 204 | Palmitoylation stabilizes unliganded rod opsin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8428-8433.                                    | 7.1 | 45        |
| 205 | Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice:<br>relationship to capillary degeneration and permeability. FASEB Journal, 2015, 29, 2194-2204. | 0.5 | 45        |
| 206 | The Crystal Structure of GCAP3 Suggests Molecular Mechanism of GCAP-linked Cone Dystrophies.<br>Journal of Molecular Biology, 2006, 359, 266-275.                                         | 4.2 | 44        |
| 207 | Novel RDH12 mutations associated with Leber congenital amaurosis and cone-rod dystrophy:<br>Biochemical and clinical evaluations. Vision Research, 2007, 47, 2055-2066.                   | 1.4 | 44        |
| 208 | Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods.<br>Biochemistry, 2010, 49, 827-834.                                                              | 2.5 | 44        |
| 209 | Retinylamine Benefits Early Diabetic Retinopathy in Mice. Journal of Biological Chemistry, 2015, 290, 21568-21579.                                                                        | 3.4 | 44        |
| 210 | Towards Treatment of Stargardt Disease: Workshop Organized and Sponsored by the Foundation<br>Fighting Blindness. Translational Vision Science and Technology, 2017, 6, 6.                | 2.2 | 44        |
| 211 | Partial Agonism in a G Protein-coupled Receptor. Journal of Biological Chemistry, 2005, 280, 34259-34267.                                                                                 | 3.4 | 43        |
| 212 | Mechanical Properties of Bovine Rhodopsin and Bacteriorhodopsin:  Possible Roles in Folding and Function. Langmuir, 2008, 24, 1330-1337.                                                  | 3.5 | 43        |
| 213 | A small molecule mitigates hearing loss in a mouse model of Usher syndrome III. Nature Chemical Biology, 2016, 12, 444-451.                                                               | 8.0 | 43        |
| 214 | Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy. , 2019, 60, 1538.                                                                                       |     | 43        |
| 215 | Light-Induced Conformational Changes of Rhodopsin Probed by Fluorescent Alexa594 Immobilized on the Cytoplasmic Surface. Biochemistry, 2000, 39, 15225-15233.                             | 2.5 | 42        |
| 216 | Crystal packing analysis of Rhodopsin crystals. Journal of Structural Biology, 2007, 158, 455-462.                                                                                        | 2.8 | 42        |

| #   | Article                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC<br>Bioinformatics, 2007, 8, 177.                                          | 2.6  | 42        |
| 218 | Evaluation of 9-cis-Retinyl Acetate Therapy inRpe65â^'/â^'Mice. , 2009, 50, 4368.                                                                                        |      | 42        |
| 219 | In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nature Communications, 2022, 13, 1830.                  | 12.8 | 42        |
| 220 | The rhodopsin-transducin complex houses two distinct rhodopsin molecules. Journal of Structural Biology, 2013, 182, 164-172.                                             | 2.8  | 41        |
| 221 | Evolutionarily conserved long intergenic non-coding RNAs in the eye. Human Molecular Genetics, 2013, 22, 2992-3002.                                                      | 2.9  | 41        |
| 222 | Structural and Functional Analysis of the Native Peripherin-ROM1 Complex Isolated from Photoreceptor Cells. Journal of Biological Chemistry, 2013, 288, 36272-36284.     | 3.4  | 41        |
| 223 | Dominant and recessive mutations in rhodopsin activate different cell death pathways. Human<br>Molecular Genetics, 2016, 25, ddw137.                                     | 2.9  | 41        |
| 224 | Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature, 2022, 604,<br>384-390.                                                               | 27.8 | 41        |
| 225 | Activation of Retinoic Acid Receptors by Dihydroretinoids. Molecular Pharmacology, 2009, 76, 1228-1237.                                                                  | 2.3  | 40        |
| 226 | Comparative Analysis of GPCR Crystal Structures <sup>â€</sup> . Photochemistry and Photobiology, 2009, 85, 425-430.                                                      | 2.5  | 40        |
| 227 | Photoreceptor phagocytosis is mediated by phosphoinositide signaling. FASEB Journal, 2013, 27, 4585-4595.                                                                | 0.5  | 40        |
| 228 | Calcium-sensitive Regions of GCAP1 as Observed by Chemical Modifications, Fluorescence, and EPR Spectroscopies. Journal of Biological Chemistry, 2001, 276, 43361-43373. | 3.4  | 39        |
| 229 | Impact of Retinal Disease-Associated RPE65 Mutations on Retinoid Isomerization. Biochemistry, 2008, 47, 9856-9865.                                                       | 2.5  | 39        |
| 230 | QLT091001, a 9-cis-Retinal Analog, Is Well-Tolerated by Retinas of Mice with Impaired Visual Cycles. ,<br>2013, 54, 455.                                                 |      | 39        |
| 231 | Advances in understanding the molecular basis of the first steps in color vision. Progress in Retinal and Eye Research, 2015, 49, 46-66.                                 | 15.5 | 39        |
| 232 | Eyes on systems pharmacology. Pharmacological Research, 2016, 114, 39-41.                                                                                                | 7.1  | 39        |
| 233 | The impact of microRNA gene regulation on the survival and function of mature cell types in the eye.<br>FASEB Journal, 2016, 30, 23-33.                                  | 0.5  | 39        |
| 234 | Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor<br>degeneration. Human Molecular Genetics, 2017, 26, ddw387.           | 2.9  | 39        |

| #   | ARTICLE nding proteins in the retina: from discovery to etiology of human disease11The nucleotide sequences reported in this manuscript have been submitted to the GenBanka,,4/ENBL databank with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | following accession numbers: short form of human CaBP1, AF169148; long form of human CaBP1, AF169149; short form of bovine CaBP1, AF169150; long form of bovine CaBP1, AF169151; short form of mouse CaBP1, AF169153; long form of mouse CaBP1, AF169152; human CaBP2, AF169154; bovine CaBP2, AF16915 | 4.1  | 38        |
| 236 | Improvement in Rod and Cone Function in Mouse Model ofFundus albipunctatusafter Pharmacologic<br>Treatment with 9-cis-Retinal. , 2006, 47, 4540.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 38        |
| 237 | Retinal cone and rod photoreceptor cells exhibit differential susceptibility to lightâ€induced damage.<br>Journal of Neurochemistry, 2012, 121, 146-156.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9  | 38        |
| 238 | From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors. Annual Review of Neuroscience, 2013, 36, 139-164.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.7 | 38        |
| 239 | Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. Journal of Lipid Research, 2021, 62, 100040.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2  | 38        |
| 240 | Mechanism of Rhodopsin Activation as Examined with Ring-constrained Retinal Analogs and the<br>Crystal Structure of the Ground State Protein. Journal of Biological Chemistry, 2001, 276, 26148-26153.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.4  | 37        |
| 241 | Exploring a new ligand binding site of G protein-coupled receptors. Chemical Science, 2018, 9, 6480-6489.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.4  | 37        |
| 242 | Biochemical and Physiological Properties of Rhodopsin Regenerated with 11-cis-6-Ring- and 7-Ring-retinals. Journal of Biological Chemistry, 2002, 277, 42315-42324.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.4  | 36        |
| 243 | Stereospecificity of Retinol Saturase:  Absolute Configuration, Synthesis, and Biological Evaluation of<br>Dihydroretinoids. Journal of the American Chemical Society, 2008, 130, 1154-1155.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.7 | 36        |
| 244 | Phospholipids Are Needed for the Proper Formation, Stability, and Function of the Photoactivated Rhodopsinâ^'Transducin Complex. Biochemistry, 2009, 48, 5159-5170.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5  | 36        |
| 245 | Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas.<br>Human Molecular Genetics, 2016, 25, ddw268.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9  | 36        |
| 246 | G protein-coupled receptorsrecent advances. Acta Biochimica Polonica, 2012, 59, 515-29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5  | 36        |
| 247 | Aberrant Metabolites in Mouse Models of Congenital Blinding Diseases:Â Formation and Storage of<br>Retinyl Estersâ€. Biochemistry, 2006, 45, 4210-4219.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5  | 35        |
| 248 | Synthesis of phosphopeptides containing <i>O</i> â€phosphoserine or <i>O</i> â€phosphothreonine.<br>International Journal of Peptide and Protein Research, 1989, 33, 468-476.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1  | 35        |
| 249 | Targeted Multifunctional Lipid ECO Plasmid DNA Nanoparticles as Efficient Non-viral Gene Therapy for<br>Leber's Congenital Amaurosis. Molecular Therapy - Nucleic Acids, 2017, 7, 42-52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1  | 35        |
| 250 | Posttranslational Modifications of the Photoreceptor-Specific ABC Transporter ABCA4. Biochemistry, 2011, 50, 6855-6866.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5  | 34        |
| 251 | Crystal structure of the globular domain of C1QTNF5: Implications for late-onset retinal macular degeneration. Journal of Structural Biology, 2012, 180, 439-446.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.8  | 34        |
| 252 | Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. Science Advances, 2019, 5, eaav4322.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.3 | 34        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl<br>Aminopeptidase. Journal of Biological Chemistry, 2012, 287, 13356-13370.                                                                        | 3.4 | 33        |
| 254 | Endogenous Fluorophores Enable Two-Photon Imaging of the Primate Eye. , 2014, 55, 4438.                                                                                                                                                       |     | 33        |
| 255 | In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones. , 2016, 57, 647.                                                                                                                                                          |     | 33        |
| 256 | Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration. Science Signaling, 2016, 9, ra74.                                                                                     | 3.6 | 33        |
| 257 | Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. Journal of Biological<br>Chemistry, 2019, 294, 19137-19154.                                                                                                         | 3.4 | 33        |
| 258 | Sequestration of Retinyl Esters Is Essential for Retinoid Signaling in the Zebrafish Embryo. Journal of<br>Biological Chemistry, 2007, 282, 1144-1151.                                                                                        | 3.4 | 32        |
| 259 | Dietary 9- <i>cis</i> -β,β-Carotene Fails to Rescue Vision in Mouse Models of Leber Congenital Amaurosis.<br>Molecular Pharmacology, 2011, 80, 943-952.                                                                                       | 2.3 | 32        |
| 260 | Non-viral Gene Therapy for Stargardt Disease with ECO/pRHO-ABCA4 Self-Assembled Nanoparticles.<br>Molecular Therapy, 2020, 28, 293-303.                                                                                                       | 8.2 | 32        |
| 261 | Expression of Functional G Protein-Coupled Receptors in Photoreceptors of TransgenicXenopus<br>laevisâ€. Biochemistry, 2005, 44, 14509-14518.                                                                                                 | 2.5 | 31        |
| 262 | Modulation of Molecular Interactions and Function by Rhodopsin Palmitylation. Biochemistry, 2009, 48, 4294-4304.                                                                                                                              | 2.5 | 31        |
| 263 | Characterization of human β,β-carotene-15,15′-monooxygenase (BCMO1) as a soluble monomeric enzyme.<br>Archives of Biochemistry and Biophysics, 2013, 539, 214-222.                                                                            | 3.0 | 31        |
| 264 | Di-retinoid-pyridinium-ethanolamine (A2E) Accumulation and the Maintenance of the Visual Cycle Are<br>Independent of Atg7-mediated Autophagy in the Retinal Pigmented Epithelium. Journal of Biological<br>Chemistry, 2015, 290, 29035-29044. | 3.4 | 31        |
| 265 | Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. ELife, 2020, 9, .                                                                                                    | 6.0 | 31        |
| 266 | A novel form of rhodopsin kinase from chicken retina and pineal gland <sup>1</sup> . FEBS Letters, 1999, 454, 115-121.                                                                                                                        | 2.8 | 30        |
| 267 | Lightâ€sensitive coupling of rhodopsin and melanopsin to G <sub>i/o</sub> and G <sub>q</sub> signal<br>transduction in <i>Caenorhabditis elegans</i> . FASEB Journal, 2012, 26, 480-491.                                                      | 0.5 | 30        |
| 268 | A Hybrid Structural Approach to Analyze Ligand Binding by the Serotonin Type 4 Receptor (5-HT4).<br>Molecular and Cellular Proteomics, 2013, 12, 1259-1271.                                                                                   | 3.8 | 30        |
| 269 | Selfâ€Assembly of a Multifunctional Lipid With Core–Shell Dendrimer DNA Nanoparticles Enhanced<br>Efficient Gene Delivery at Low Charge Ratios into RPE Cells. Macromolecular Bioscience, 2015, 15,<br>1663-1672.                             | 4.1 | 30        |
| 270 | An effective thiol-reactive probe for differential scanning fluorimetry with a standard real-time polymerase chain reaction device. Analytical Biochemistry, 2016, 499, 63-65.                                                                | 2.4 | 29        |

KRZYSZTOF PALCZEWSKI

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proceedings of the United States of America, 2017, 114, E2608-E2615.                             | 7.1  | 28        |
| 272 | Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function.<br>Journal of General Physiology, 2018, 150, 571-590.                                 | 1.9  | 28        |
| 273 | Expression of GCAP 1 and GCAP2 in the retinal degeneration (rd) mutant chicken retina. FEBS Letters, 1996, 385, 47-52.                                                             | 2.8  | 27        |
| 274 | Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin. FASEB Journal, 2009, 23, 371-381.                    | 0.5  | 27        |
| 275 | Imaging of Protein Crystals with Two-Photon Microscopy. Biochemistry, 2012, 51, 1625-1637.                                                                                         | 2.5  | 27        |
| 276 | Analysis of Carotenoid Isomerase Activity in a Prototypical Carotenoid Cleavage Enzyme,<br>Apocarotenoid Oxygenase (ACO). Journal of Biological Chemistry, 2014, 289, 12286-12299. | 3.4  | 27        |
| 277 | Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT <sub>1A</sub> Receptor.<br>Angewandte Chemie - International Edition, 2016, 55, 8661-8665.                     | 13.8 | 27        |
| 278 | The Biochemical Basis of Vitamin A <sub>3</sub> Production in Arthropod Vision. ACS Chemical Biology, 2016, 11, 1049-1057.                                                         | 3.4  | 27        |
| 279 | Pathways and disease-causing alterations in visual chromophore production for vertebrate vision.<br>Journal of Biological Chemistry, 2021, 296, 100072.                            | 3.4  | 27        |
| 280 | Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans. Biomedical Optics Express, 2016, 7, 5148.                                     | 2.9  | 26        |
| 281 | Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Human Molecular Genetics, 2018, 27, 2225-2243.                          | 2.9  | 26        |
| 282 | Autosomal recessive retinitis pigmentosa E150K opsin mice exhibit photoreceptor disorganization.<br>Journal of Clinical Investigation, 2013, 123, 121-137.                         | 8.2  | 26        |
| 283 | Retinyl Ester Homeostasis in the Adipose Differentiation-related Protein-deficient Retina. Journal of<br>Biological Chemistry, 2008, 283, 25091-25102.                             | 3.4  | 25        |
| 284 | Effects of Long-Term Administration of 9- <i>cis</i> -Retinyl Acetate on Visual Function in Mice. , 2009, 50, 322.                                                                 |      | 25        |
| 285 | Key Residues for Catalytic Function and Metal Coordination in a Carotenoid Cleavage Dioxygenase.<br>Journal of Biological Chemistry, 2016, 291, 19401-19412.                       | 3.4  | 25        |
| 286 | Noninvasive two-photon optical biopsy of retinal fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22532-22543.            | 7.1  | 25        |
| 287 | Determinants shaping the nanoscale architecture of the mouse rod outer segment. ELife, 2021, 10, .                                                                                 | 6.0  | 25        |
| 288 | Conformational Changes in the G Protein-Coupled Receptor Rhodopsin Revealed by Histidine<br>Hydrogenâ^'Deuterium Exchange. Biochemistry, 2010, 49, 9425-9427.                      | 2.5  | 24        |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Structural Characterization of the Rod cGMP Phosphodiesterase 6. Journal of Molecular Biology, 2010, 401, 363-373.                                                               | 4.2 | 24        |
| 290 | A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids. , 2012, 53, 6314.                                                                  |     | 24        |
| 291 | Systems Pharmacology Links GPCRs with Retinal Degenerative Disorders. Annual Review of Pharmacology and Toxicology, 2016, 56, 273-298.                                           | 9.4 | 24        |
| 292 | Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight, 2018, 3, .                                                                                 | 5.0 | 24        |
| 293 | [21] Multienzyme analysis of visual cycle. Methods in Enzymology, 2000, 316, 330-344.                                                                                            | 1.0 | 23        |
| 294 | An Acyl-covalent Enzyme Intermediate of Lecithin:Retinol Acyltransferase*. Journal of Biological<br>Chemistry, 2010, 285, 29217-29222.                                           | 3.4 | 23        |
| 295 | Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opinion on Orphan Drugs, 2015, 3, 563-575.                                           | 0.8 | 23        |
| 296 | Periscope for noninvasive two-photon imaging of murine retina in vivo. Biomedical Optics Express, 2015, 6, 3352.                                                                 | 2.9 | 23        |
| 297 | Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry, 2016, 55, 3082-3091.                                                       | 2.5 | 23        |
| 298 | Structure and Spectroscopy of Alkene-Cleaving Dioxygenases Containing an Atypically Coordinated Non-Heme Iron Center. Biochemistry, 2017, 56, 2836-2852.                         | 2.5 | 23        |
| 299 | Context-dependent compensation among phosphatidylserine-recognition receptors. Scientific Reports, 2017, 7, 14623.                                                               | 3.3 | 23        |
| 300 | Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With<br>Two-Photon Ophthalmoscopy. , 2017, 58, 604.                                  |     | 23        |
| 301 | Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition.<br>Journal of Cell Biology, 2021, 220, .                                    | 5.2 | 23        |
| 302 | Different Properties of the Native and Reconstituted Heterotrimeric G Protein Transducin.<br>Biochemistry, 2008, 47, 12409-12419.                                                | 2.5 | 22        |
| 303 | MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. Journal of Biological Chemistry, 2017, 292, 3366-3378. | 3.4 | 22        |
| 304 | A G Protein-Coupled Receptor Dimerization Interface in Human Cone Opsins. Biochemistry, 2017, 56, 61-72.                                                                         | 2.5 | 22        |
| 305 | Conditional deletion of <i>Des1</i> in the mouse retina does not impair the visual cycle in cones. FASEB<br>Journal, 2019, 33, 5782-5792.                                        | 0.5 | 22        |
| 306 | PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood, 2020, 136, 2217-2228.                                                                     | 1.4 | 22        |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Autosomal Recessive Retinitis Pigmentosa and E150K Mutation in the Opsin Gene. Journal of Biological Chemistry, 2006, 281, 22289-22298.                                                     | 3.4  | 21        |
| 308 | A Functional Kinase Homology Domain Is Essential for the Activity of Photoreceptor Guanylate<br>Cyclase 1. Journal of Biological Chemistry, 2010, 285, 1899-1908.                           | 3.4  | 21        |
| 309 | 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxford, England), 2013, 62, 95-107.        | 1.5  | 21        |
| 310 | Animals deficient in C2Orf71, an autosomal recessive retinitis pigmentosa-associated locus, develop severe early-onset retinal degeneration. Human Molecular Genetics, 2015, 24, 2627-2640. | 2.9  | 21        |
| 311 | Two-photon microperimetry: sensitivity of human photoreceptors to infrared light. Biomedical Optics<br>Express, 2019, 10, 4551.                                                             | 2.9  | 21        |
| 312 | Conformational Changes in Guanylate Cyclase-Activating Protein 1 Induced by Ca2+ and N-Terminal Fatty Acid Acylation. Structure, 2010, 18, 116-126.                                         | 3.3  | 20        |
| 313 | Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials, 2015, 44, 103-110.                                                                       | 11.4 | 20        |
| 314 | A Combination of G Protein–Coupled Receptor Modulators Protects Photoreceptors from<br>Degeneration. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 207-220.             | 2.5  | 20        |
| 315 | Conditional Ablation of Retinol Dehydrogenase 10 in the Retinal Pigmented Epithelium Causes Delayed<br>Dark Adaption in Mice. Journal of Biological Chemistry, 2015, 290, 27239-27247.      | 3.4  | 19        |
| 316 | Expansion of First-in-Class Drug Candidates That Sequester Toxic All- <i>Trans</i> -Retinal and Prevent<br>Light-Induced Retinal Degeneration. Molecular Pharmacology, 2015, 87, 477-491.   | 2.3  | 19        |
| 317 | Serum levels of lipid metabolites in ageâ€related macular degeneration. FASEB Journal, 2015, 29,<br>4579-4588.                                                                              | 0.5  | 19        |
| 318 | Image registration and averaging of low laser power two-photon fluorescence images of mouse retina. Biomedical Optics Express, 2016, 7, 2671.                                               | 2.9  | 19        |
| 319 | Structural Insights into the <i>Drosophila melanogaster</i> Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry, 2016, 55, 6545-6557.           | 2.5  | 19        |
| 320 | Rational Tuning of Visual Cycle Modulator Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 131-145.                                                      | 2.5  | 19        |
| 321 | Purification of Arrestin from Bovine Retinas. Methods in Neurosciences, 1993, 15, 226-236.                                                                                                  | 0.5  | 18        |
| 322 | The macular degeneration-linked C1QTNF5 (S163) mutation causes higher-order structural rearrangements. Journal of Structural Biology, 2014, 186, 86-94.                                     | 2.8  | 18        |
| 323 | Conformational Change of Human Checkpoint Kinase 1 (Chk1) Induced by DNA Damage. Journal of<br>Biological Chemistry, 2016, 291, 12951-12959.                                                | 3.4  | 18        |
| 324 | Structural biology of 11- <i>cis-</i> retinaldehyde production in the classical visual cycle. Biochemical<br>Journal, 2018, 475, 3171-3188.                                                 | 3.7  | 18        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope. Journal of Clinical Investigation, 2022, 132, .                                                     | 8.2  | 18        |
| 326 | Heterologous Expression of the Adenosine A1 Receptor in Transgenic Mouse Retina. Biochemistry, 2007, 46, 8350-8359.                                                                                       | 2.5  | 17        |
| 327 | Heterologous expression of functional Gâ€proteinâ€coupled receptors in <i>Caenorhabditis elegans</i> .<br>FASEB Journal, 2012, 26, 492-502.                                                               | 0.5  | 17        |
| 328 | A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation. , 2015, 56, 2553.                                                                                   |      | 17        |
| 329 | Receptor MER Tyrosine Kinase Proto-oncogene (MERTK) Is Not Required for Transfer of Bis-retinoids to the Retinal Pigmented Epithelium. Journal of Biological Chemistry, 2016, 291, 26937-26949.           | 3.4  | 17        |
| 330 | Quantitative phosphoproteomics reveals involvement of multiple signaling pathways in early phagocytosis by the retinal pigmented epithelium. Journal of Biological Chemistry, 2017, 292, 19826-19839.     | 3.4  | 17        |
| 331 | A p97/Valosin-Containing Protein Inhibitor Drug CB-5083 Has a Potent but Reversible Off-Target Effect<br>on Phosphodiesterase-6. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 31-41. | 2.5  | 17        |
| 332 | Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Letters, 2003, 555, 151-159.                              | 2.8  | 16        |
| 333 | R9AP Overexpression Alters Phototransduction Kinetics in iCre75 Mice. , 2014, 55, 1339.                                                                                                                   |      | 16        |
| 334 | The G Protein-Coupled Receptor Rhodopsin: A Historical Perspective. Methods in Molecular Biology, 2015, 1271, 3-18.                                                                                       | 0.9  | 16        |
| 335 | Splice Variants of Arrestins. Experimental Eye Research, 1996, 63, 599-602.                                                                                                                               | 2.6  | 15        |
| 336 | Human Cellular Retinaldehyde-Binding Protein Has Secondary Thermal 9- <i>cis</i> -Retinal Isomerase<br>Activity. Journal of the American Chemical Society, 2014, 136, 137-146.                            | 13.7 | 15        |
| 337 | The role of retinol dehydrogenase 10 in the cone visual cycle. Scientific Reports, 2017, 7, 2390.                                                                                                         | 3.3  | 15        |
| 338 | Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells<br>in Blind Mice and Dogs. Molecular Pharmacology, 2018, 93, 438-452.                                  | 2.3  | 15        |
| 339 | Protective Effect of a Locked Retinal Chromophore Analog against Light-Induced Retinal<br>Degeneration. Molecular Pharmacology, 2018, 94, 1132-1144.                                                      | 2.3  | 15        |
| 340 | Formulation and efficacy of ECO/pRHO-ABCA4-SV40 nanoparticles for nonviral gene therapy of Stargardt disease in a mouse model. Journal of Controlled Release, 2021, 330, 329-340.                         | 9.9  | 15        |
| 341 | MicroRNA regulation of critical retinal pigment epithelial functions. Trends in Neurosciences, 2022, 45, 78-90.                                                                                           | 8.6  | 15        |
| 342 | Retinal degeneration in animal models with a defective visual cycle. Drug Discovery Today: Disease<br>Models, 2013, 10, e163-e172.                                                                        | 1.2  | 14        |

KRZYSZTOF PALCZEWSKI

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Crystallization of G Protein-Coupled Receptors. Methods in Cell Biology, 2013, 117, 451-468.                                                                                                                             | 1.1  | 14        |
| 344 | Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains. Protein Expression and Purification, 2014, 97, 50-60.                                                            | 1.3  | 14        |
| 345 | New GABA modulators protect photoreceptor cells from lightâ€induced degeneration in mouse models.<br>FASEB Journal, 2018, 32, 3289-3300.                                                                                 | 0.5  | 14        |
| 346 | Visualization of Retinoid Storage and Trafficking by Two-Photon Microscopy. Methods in Molecular<br>Biology, 2010, 652, 247-261.                                                                                         | 0.9  | 14        |
| 347 | Is rhodopsin dimeric in native retinal rods?. Nature, 2003, 426, 31-31.                                                                                                                                                  | 27.8 | 13        |
| 348 | Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology. Journal of Neuroscience Methods, 2011, 198, 70-76.                                                                  | 2.5  | 13        |
| 349 | Highâ€resolution crystal structures of the photoreceptor glyceraldehyde 3â€phosphate dehydrogenase<br>( <scp>GAPDH</scp> ) with three and fourâ€bound <scp>NAD</scp> molecules. Protein Science, 2014, 23,<br>1629-1639. | 7.6  | 13        |
| 350 | Manganese-Enhanced MRI for Preclinical Evaluation of Retinal Degeneration Treatments. , 2015, 56, 4936.                                                                                                                  |      | 13        |
| 351 | Apo-Opsin Exists in Equilibrium Between a Predominant Inactive and a Rare Highly Active State. Journal of Neuroscience, 2019, 39, 212-223.                                                                               | 3.6  | 13        |
| 352 | Molecular Biology and Analytical Chemistry Methods Used to Probe the Retinoid Cycle. Methods in<br>Molecular Biology, 2010, 652, 229-245.                                                                                | 0.9  | 13        |
| 353 | Heterologous Expression and Purification of the Serotonin Type 4 Receptor from Transgenic Mouse<br>Retina. Biochemistry, 2008, 47, 13296-13307.                                                                          | 2.5  | 12        |
| 354 | Substrate-Induced Changes in the Dynamics of Rhodopsin Kinase (G Protein-Coupled Receptor Kinase 1).<br>Biochemistry, 2012, 51, 3404-3411.                                                                               | 2.5  | 12        |
| 355 | Post-Translational Modifications of the Serotonin Type 4 Receptor Heterologously Expressed in Mouse Rod Cells. Biochemistry, 2012, 51, 214-224.                                                                          | 2.5  | 12        |
| 356 | Structural Insights into Activation of the Retinal L-type Ca2+ Channel (Cav1.4) by Ca2+-binding Protein<br>4 (CaBP4). Journal of Biological Chemistry, 2014, 289, 31262-31273.                                           | 3.4  | 12        |
| 357 | Structural approaches to understanding retinal proteins needed for vision. Current Opinion in Cell<br>Biology, 2014, 27, 32-43.                                                                                          | 5.4  | 12        |
| 358 | Retinol dehydrogenase 8 and ATPâ€binding cassette transporter 4 modulate dark adaptation of Mâ€cones<br>in mammalian retina. Journal of Physiology, 2015, 593, 4923-4941.                                                | 2.9  | 12        |
| 359 | Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs<br>Yb-fiber laser. Biomedical Optics Express, 2017, 8, 5228.                                                             | 2.9  | 12        |
| 360 | Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of<br>Emixustat for Retinal Therapy. Journal of Medicinal Chemistry, 2021, 64, 8287-8302.                                       | 6.4  | 12        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Structural evidence for visual arrestin priming via complexation of phosphoinositols. Structure, 2022, 30, 263-277.e5.                                                                                                                                | 3.3  | 12        |
| 362 | Inhibition of ceramide accumulation in AdipoR1–/– mice increases photoreceptor survival and improves vision. JCI Insight, 2022, 7, .                                                                                                                  | 5.0  | 12        |
| 363 | Identification and Characterization of Novel Inhibitors of Mammalian Aspartyl Aminopeptidase.<br>Molecular Pharmacology, 2014, 86, 231-242.                                                                                                           | 2.3  | 11        |
| 364 | Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark<br>adaptation of mammalian photoreceptors. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, E9675-E9684. | 7.1  | 11        |
| 365 | Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue. Journal of Biological Chemistry, 2017, 292, 10983-10997.                                                                            | 3.4  | 11        |
| 366 | The selective estrogen receptor modulator raloxifene mitigates the effect of all-trans-retinal toxicity in photoreceptor degeneration. Journal of Biological Chemistry, 2019, 294, 9461-9475.                                                         | 3.4  | 11        |
| 367 | A Mixture of U.S. Food and Drug Administration–Approved Monoaminergic Drugs Protects the Retina<br>From Light Damage in Diverse Models of Night Blindness. , 2019, 60, 1442.                                                                          |      | 11        |
| 368 | Specificity of the chromophore-binding site in human cone opsins. Journal of Biological Chemistry, 2019, 294, 6082-6093.                                                                                                                              | 3.4  | 11        |
| 369 | Stable Retinoid Analogue Targeted Dual pH-Sensitive Smart Lipid ECO/ <i>pDNA</i> Nanoparticles for Specific Gene Delivery in the Retinal Pigment Epithelium. ACS Applied Bio Materials, 2020, 3, 3078-3086.                                           | 4.6  | 11        |
| 370 | Serial Block Faceâ€Scanning Electron Microscopy: A Method to Study Retinal Degenerative Phenotypes.<br>Current Protocols in Mouse Biology, 2014, 4, 197-204.                                                                                          | 1.2  | 11        |
| 371 | Light-Induced Translocation of RCS9-1 and GÎ <sup>2</sup> 5L in Mouse Rod Photoreceptors. PLoS ONE, 2013, 8, e58832.                                                                                                                                  | 2.5  | 11        |
| 372 | Identification of a Single Phosphorylation Site Within Octopus Rhodopsin. Photochemistry and Photobiology, 1998, 68, 824-828.                                                                                                                         | 2.5  | 10        |
| 373 | Multifunctional PEG Retinylamine Conjugate Provides Prolonged Protection against Retinal Degeneration in Mice. Biomacromolecules, 2014, 15, 4570-4578.                                                                                                | 5.4  | 10        |
| 374 | Dynamic peptides of human TPP1 fulfill diverse functions in telomere maintenance. Nucleic Acids<br>Research, 2016, 44, gkw846.                                                                                                                        | 14.5 | 10        |
| 375 | Human red and green cone opsins are O-glycosylated at an N-terminal Ser/Thr–rich domain conserved<br>in vertebrates. Journal of Biological Chemistry, 2019, 294, 8123-8133.                                                                           | 3.4  | 10        |
| 376 | Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model. Human Molecular Genetics, 2020, 29, 2611-2624.                                                                                            | 2.9  | 10        |
| 377 | An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight, 2021, 6, .                                                                                                                                       | 5.0  | 10        |
| 378 | An Expedient Synthesis of CMF-019: (S)-5-Methyl-3-{1-(pentan-3-yl)-2-<br>(thiophen-2-ylmethyl)-1H-benzo[d]imidazole-5-carboxamido}hexanoic Acid, a Potent Apelin Receptor<br>(APJ) Agonist. Medicinal Chemistry, 2018, 14, 688-694.                   | 1.5  | 10        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Tissue- and Species-Specific Patterns of RNA metabolism in Post-Mortem Mammalian Retina and Retinal<br>Pigment Epithelium. Scientific Reports, 2019, 9, 14821.                                                          | 3.3 | 9         |
| 380 | Sensitivity of Mammalian Cone Photoreceptors to Infrared Light. Neuroscience, 2019, 416, 100-108.                                                                                                                       | 2.3 | 9         |
| 381 | Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules, 2019, 9, 737.                                                                   | 4.0 | 9         |
| 382 | Clinical Application of Infrared-Light Microperimetry in the Assessment of Scotopic-Eye Sensitivity.<br>Translational Vision Science and Technology, 2020, 9, 7.                                                        | 2.2 | 9         |
| 383 | Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation. PLoS ONE, 2020, 15, e0228121.                                    | 2.5 | 9         |
| 384 | Function of mammalian M-cones depends on the level of CRALBP in Müller cells. Journal of General Physiology, 2021, 153, .                                                                                               | 1.9 | 9         |
| 385 | THE LOSS OF INFRARED LIGHT SENSITIVITY OF PHOTORECEPTOR CELLS MEASURED WITH TWO-PHOTON EXCITATION AS AN INDICATOR OF DIABETIC RETINOPATHY. Retina, 2021, 41, 1302-1308.                                                 | 1.7 | 9         |
| 386 | Crystallization of Proteins from Crude Bovine Rod Outer Segments. Methods in Enzymology, 2015, 557, 439-458.                                                                                                            | 1.0 | 8         |
| 387 | Hydrogen/Deuterium Exchange Mass Spectrometry of Human Green Opsin Reveals a Conserved Pro-Pro<br>Motif in Extracellular Loop 2 of Monostable Visual G Protein-Coupled Receptors. Biochemistry, 2017,<br>56, 2338-2348. | 2.5 | 8         |
| 388 | <i>Z</i> -isomerization of retinoids through combination of monochromatic photoisomerization and metal catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8125-8139.                                              | 2.8 | 8         |
| 389 | Two-photon microperimetry with picosecond pulses. Biomedical Optics Express, 2021, 12, 462.                                                                                                                             | 2.9 | 8         |
| 390 | Blind Dogs That Can See. JAMA Ophthalmology, 2010, 128, 1483.                                                                                                                                                           | 2.4 | 7         |
| 391 | Heterogeneous N-Terminal Acylation of Retinal Proteins Results from the Retina's Unusual Lipid<br>Metabolism. Biochemistry, 2011, 50, 3764-3776.                                                                        | 2.5 | 7         |
| 392 | Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in<br>Caenorhabditis elegans. Analytical Biochemistry, 2015, 472, 30-36.                                                            | 2.4 | 7         |
| 393 | Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacological Research, 2017, 115, 1-13.                | 7.1 | 7         |
| 394 | Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry, 2018, 57, 1022-1030.                                                                                                                    | 2.5 | 7         |
| 395 | Electrostatic Compensation Restores Trafficking of the Autosomal Recessive Retinitis Pigmentosa<br>E150K Opsin Mutant to the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 29446-29456.                  | 3.4 | 6         |
| 396 | Expression of Mammalian G Protein-Coupled Receptors in Caenorhabditis elegans. Methods in<br>Enzymology, 2013, 520, 239-256.                                                                                            | 1.0 | 6         |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Stereospecific modulation of dimeric rhodopsin. FASEB Journal, 2019, 33, 9526-9539.                                                                                                                             | 0.5  | 6         |
| 398 | Catalytic synthesis of 9-cis-retinoids: mechanistic insights. Dalton Transactions, 2019, 48, 10581-10595.                                                                                                       | 3.3  | 6         |
| 399 | Single particle cryoâ€EM of the complex between interphotoreceptor retinoidâ€binding protein and a<br>monoclonal antibody. FASEB Journal, 2020, 34, 13918-13934.                                                | 0.5  | 6         |
| 400 | Regulation of Adrenergic, Serotonin, and Dopamine Receptors to Inhibit Diabetic Retinopathy:<br>Monotherapies versus Combination Therapies. Molecular Pharmacology, 2021, 100, 470-479.                         | 2.3  | 6         |
| 401 | New focus on regulation of the rod photoreceptor phosphodiesterase. Current Opinion in Structural Biology, 2021, 69, 99-107.                                                                                    | 5.7  | 6         |
| 402 | VCP/p97 inhibitor CB-5083 modulates muscle pathology in a mouse model of VCP inclusion body myopathy. Journal of Translational Medicine, 2022, 20, 21.                                                          | 4.4  | 6         |
| 403 | Cellular Retinaldehyde Binding Protein—Different Binding Modes and Micro-Solvation Patterns for<br>High-Affinity 9-cis- and 11-cis-Retinal Substrates. Journal of Physical Chemistry B, 2013, 117, 10719-10729. | 2.6  | 5         |
| 404 | Retinal Gene Distribution and Functionality Implicated in Inherited Retinal Degenerations Can Reveal<br>Disease-Relevant Pathways for Pharmacologic Intervention. Pharmaceuticals, 2019, 12, 74.                | 3.8  | 5         |
| 405 | Noninvasive Two-Photon Microscopy Imaging of Mouse Retina and Retinal Pigment Epithelium.<br>Methods in Molecular Biology, 2019, 1834, 333-343.                                                                 | 0.9  | 5         |
| 406 | Identification of small-molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. Journal of Biological Chemistry, 2021, 297, 101401.                                       | 3.4  | 5         |
| 407 | Detergents Stabilize the Conformation of Phosphodiesterase 6. Biochemistry, 2011, 50, 9520-9531.                                                                                                                | 2.5  | 4         |
| 408 | As Good as Chocolate. Science, 2013, 340, 562-563.                                                                                                                                                              | 12.6 | 4         |
| 409 | Argonaute High-Throughput Sequencing of RNAs Isolated by Cross-Linking Immunoprecipitation<br>Reveals a Snapshot of miRNA Gene Regulation in the Mammalian Retina. Biochemistry, 2014, 53, 5831-5833.           | 2.5  | 4         |
| 410 | Peptide Derivatives of Retinylamine Prevent Retinal Degeneration with Minimal Side Effects on Vision in Mice. Bioconjugate Chemistry, 2021, 32, 572-583.                                                        | 3.6  | 4         |
| 411 | A large animal model of <i>RDH5</i> -associated retinopathy recapitulates important features of the human phenotype. Human Molecular Genetics, 2022, 31, 1263-1277.                                             | 2.9  | 4         |
| 412 | Focus on vision: 3 decades of remarkable contributions to biology and medicine. FASEB Journal, 2011, 25, 439-443.                                                                                               | 0.5  | 3         |
| 413 | Thematic Minireview Series on Focus on Vision. Journal of Biological Chemistry, 2012, 287, 1610-1611.                                                                                                           | 3.4  | 3         |
| 414 | Structure and Function of G-Protein-Coupled Receptor Kinases 1 and 7. Methods in Pharmacology and Toxicology, 2016, , 25-43.                                                                                    | 0.2  | 3         |

24

| #   | Article                                                                                                                                                                                                                                                 | IF        | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 415 | Molecular Mechanism of Visual Transduction. Novartis Foundation Symposium, 1999, 224, 191-207.                                                                                                                                                          | 1.1       | 3         |
| 416 | Regenerating Skeletal Muscle Compensates for the Impaired Macrophage Functions Leading to Normal<br>Muscle Repair in Retinol Saturase Null Mice. Cells, 2022, 11, 1333.                                                                                 | 4.1       | 3         |
| 417 | Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas. Biomedical Optics Express, 2015, 6, 3032.                                                                                       | 2.9       | 2         |
| 418 | Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT <sub>1A</sub> Receptor.<br>Angewandte Chemie, 2016, 128, 8803-8807.                                                                                                                 | 2.0       | 2         |
| 419 | The Molecular Mechanism of P2Y <sub>1</sub> Receptor Activation. Angewandte Chemie, 2016, 128, 10487-10491.                                                                                                                                             | 2.0       | 2         |
| 420 | Reprint of "Crystal packing analysis of Rhodopsin crystals―[J. Struct. Biol. 158 (2007) 455–462]â~†. Journa<br>of Structural Biology, 2007, 159, 253-260.                                                                                               | al<br>2.8 | 1         |
| 421 | Skunkworks project for Big Pharma. Pharmacological Research, 2017, 124, 167-168.                                                                                                                                                                        | 7.1       | 1         |
| 422 | Crowd sourcing difficult problems in protein science <sup>*</sup> . Protein Science, 2017, 26, 2118-2125.                                                                                                                                               | 7.6       | 1         |
| 423 | Theoretical Study of the Photoisomerization Mechanism of All- <i>Trans</i> -Retinyl Acetate. Journal of Physical Chemistry A, 2021, 125, 8358-8372.                                                                                                     | 2.5       | 1         |
| 424 | Crystal Structure of Rhodopsin: Implication for Vision and Beyond. Mechanisms of Acti. Scientific World Journal, The, 2002, 2, 106-107.                                                                                                                 | 2.1       | 1         |
| 425 | Epi-direction detected multimodal imaging of an unstained mouse retina with a Yb-fiber laser. , 2017, 10069, .                                                                                                                                          |           | 0         |
| 426 | Development of chiral fluorinated alkyl derivatives of emixustat as drug candidates for the treatment of retinal degenerative diseases. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127421.                                                   | 2.2       | 0         |
| 427 | Characterizing the Metabolism and Physiological Functions of Dihydroretinoids, Charting a Novel<br>Pathway in the Metabolism of Vitamin A. FASEB Journal, 2006, 20, A996.                                                                               | 0.5       | 0         |
| 428 | Expression of functional G proteinâ€coupled receptors in photoreceptors of transgenic Xenopus laevis.<br>FASEB Journal, 2006, 20, A919.                                                                                                                 | 0.5       | 0         |
| 429 | Crystal structure of human guanylate cyclase activating proteinâ€3. FASEB Journal, 2006, 20, A542.                                                                                                                                                      | 0.5       | 0         |
| 430 | STRA6: A gatekeeper of neuronal vitamin A homeostasis. FASEB Journal, 2013, 27, lb83.                                                                                                                                                                   | 0.5       | 0         |
| 431 | Immuno-TEM/STEM in Retinal Research. Methods in Molecular Biology, 2019, 1834, 311-332.                                                                                                                                                                 | 0.9       | 0         |
| 432 | Straightforward Access to Terminally Disubstituted Electronâ€Deficient Alkylidene Cyclopentâ€2â€enâ€4â€ones<br>through Olefination with α arbonyl and α yano Secondary Alkyl Sulfones. European Journal of<br>Organic Chemistry, 2021, 2021, 6725-6736. | 2.4       | 0         |

| #   | Article                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Title is missing!. , 2020, 15, e0228121.                                                                        |     | 0         |
| 434 | Title is missing!. , 2020, 15, e0228121.                                                                        |     | 0         |
| 435 | Title is missing!. , 2020, 15, e0228121.                                                                        |     | 0         |
| 436 | Title is missing!. , 2020, 15, e0228121.                                                                        |     | 0         |
| 437 | Stabilization of Metaâ€I Rhodopsin Conformation by a Nanobody. FASEB Journal, 2022, 36, .                       | 0.5 | 0         |
| 438 | Two-photon excited fluorescence scanning laser ophthalmoscope for in vivo imaging of the human eye. , 2022, , . |     | 0         |