Emmanuel Arthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2772087/publications.pdf

Version: 2024-02-01

88 papers

2,196 citations

201674 27 h-index 265206 42 g-index

92 all docs 92 docs citations 92 times ranked 2180 citing authors

#	Article	IF	CITATIONS
1	Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 2020, 361, 114055.	5.1	260
2	Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 2016, 103, 44-55.	4.3	83
3	Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 2017, 307, 189-197.	5.1	82
4	A New Two-Stage Approach to predicting the soil water characteristic from saturation to oven-dryness. Journal of Hydrology, 2015, 521, 498-507.	5.4	74
5	Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 2018, 314, 102-112.	5.1	73
6	Revealing Soil Structure and Functional Macroporosity along a Clay Gradient Using X-ray Computed Tomography. Soil Science Society of America Journal, 2013, 77, 403-411.	2.2	71
7	Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 2014, 50, 1087-1097.	4.3	67
8	Soil Specific Surface Area and Nonâ€Singularity of Soilâ€Water Retention at Low Saturations. Soil Science Society of America Journal, 2013, 77, 43-53.	2,2	64
9	Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam. Soil Science, 2013, 178, 465-473.	0.9	62
10	Density and permeability of a loess soil: Long-term organic matter effect and the response to compressive stress. Geoderma, 2013, 193-194, 236-245.	5.1	53
11	Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma, 2015, 243-244, 175-182.	5.1	50
12	Evaluation of theoretical and empirical water vapor sorption isotherm models for soils. Water Resources Research, 2016, 52, 190-205.	4.2	50
13	Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol. Soil and Tillage Research, 2020, 202, 104663.	5.6	50
14	Amending a loamy sand with three compost types: impact on soil quality. Soil Use and Management, 2011, 27, 116-123.	4.9	45
15	Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area. European Journal of Soil Science, 2018, 69, 245-255.	3.9	43
16	Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content. European Journal of Soil Science, 2015, 66, 206-217.	3.9	40
17	Prediction of the soil water retention curve for structured soil from saturation to ovenâ€dryness. European Journal of Soil Science, 2017, 68, 57-65.	3.9	40
18	Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils. Geoderma, 2012, 173-174, 50-60.	5.1	39

#	Article	IF	Citations
19	Soil microbial and physical properties and their relations along a steep copper gradient. Agriculture, Ecosystems and Environment, 2012, 159, 9-18.	5.3	37
20	Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment. Soil Biology and Biochemistry, 2016, 97, 112-120.	8.8	36
21	Effect of Biochar Application on Hydraulic Properties of Sandy Soil under Dry and Wet Conditions. Vadose Zone Journal, 2018, 17, 1-8.	2.2	36
22	Simultaneous Loss of Soil Biodiversity and Functions along a Copper Contamination Gradient: When Soil Goes to Sleep. Soil Science Society of America Journal, 2014, 78, 1239-1250.	2.2	35
23	Prediction of the glyphosate sorption coefficient across two loamy agricultural fields. Geoderma, 2015, 259-260, 224-232.	5.1	31
24	Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science. Soil Science Society of America Journal, 2014, 78, 754-760.	2.2	29
25	Quantification of Soil Pore Network Complexity with X-ray Computed Tomography and Gas Transport Measurements. Soil Science Society of America Journal, 2015, 79, 1577-1589.	2.2	29
26	Soil organic carbon storage and quality are impacted by corn cob biochar application on a tropical sandy loam. Journal of Soils and Sediments, 2020, 20, 1960-1969.	3.0	29
27	Linking Particle and Pore Size Distribution Parameters to Soil Gas Transport Properties. Soil Science Society of America Journal, 2012, 76, 18-27.	2.2	28
28	Rapid estimation of cation exchange capacity from soil water content. European Journal of Soil Science, 2017, 68, 365-373.	3.9	28
29	Biochar amendment of fluvioâ€glacial temperate sandy subsoil: Effects on maize water uptake, growth and physiology. Journal of Agronomy and Crop Science, 2018, 204, 123-136.	3.5	28
30	Clay content and mineralogy, organic carbon and cation exchange capacity affect water vapour sorption hysteresis of soil. European Journal of Soil Science, 2020, 71, 204-214.	3.9	28
31	Biochar amendment impacts on microbial community structures and biological and enzyme activities in a weathered tropical sandy loam. Applied Soil Ecology, 2022, 172, 104364.	4.3	27
32	Compost Amendment to Sandy Soil Affects Soil Properties and Greenhouse Tomato Productivity. Compost Science and Utilization, 2012, 20, 215-221.	1.2	25
33	Rapid and Fully Automated Measurement of Water Vapor Sorption Isotherms: New Opportunities for Vadose Zone Research. Vadose Zone Journal, 2014, 13, 1-7.	2.2	25
34	Effects of Past Copper Contamination and Soil Structure on Copper Leaching from Soil. Journal of Environmental Quality, 2013, 42, 1852-1862.	2.0	23
35	Corn Cob Biochar Improves Aggregate Characteristics of a Tropical Sandy Loam. Soil Science Society of America Journal, 2017, 81, 1054-1063.	2.2	21
36	Effect of compost on erodibility of loamy sand under simulated rainfall. Catena, 2011, 85, 67-72.	5.0	19

#	Article	IF	Citations
37	Pore Structure of Natural and Regenerated Soil Aggregates: An X-Ray Computed Tomography Analysis. Soil Science Society of America Journal, 2014, 78, 377-386.	2.2	19
38	Pore Structure Characteristics After 2 Years of Biochar Application to a Sandy Loam Field. Soil Science, 2015, 180, 41-46.	0.9	19
39	Assessing Soil Water Repellency of a Sandy Field with Visible near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 215-224.	1.5	19
40	Impact of rice straw biochar and irrigation on maize yield, intercepted radiation and water productivity in a tropical sandy clay loam. Field Crops Research, 2019, 243, 107628.	5.1	19
41	Comparison of Cation Exchange Capacity Estimated from Vis–NIR Spectral Reflectance Data and a Pedotransfer Function. Vadose Zone Journal, 2019, 18, 1-8.	2.2	18
42	Evaluating models to estimate cation exchange capacity of calcareous soils. Geoderma, 2021, 400, 115221.	5.1	18
43	Rice straw biochar affects water retention and air movement in a sand-textured tropical soil. Archives of Agronomy and Soil Science, 2017, 63, 2035-2047.	2.6	17
44	Soil Specific Surface Area Determination by Visible Nearâ€Infrared Spectroscopy. Soil Science Society of America Journal, 2018, 82, 1046-1056.	2.2	17
45	Water Retention, Gas Transport, and Pore Network Complexity during Short-Term Regeneration of Soil Structure. Soil Science Society of America Journal, 2013, 77, 1965-1976.	2.2	16
46	Soil structure and microbial activity dynamics in 20â€month fieldâ€incubated organicâ€amended soils. European Journal of Soil Science, 2014, 65, 218-230.	3.9	16
47	Estimating Atterberg limits of soils from hygroscopic water content. Geoderma, 2021, 381, 114698.	5.1	16
48	Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients. Soil Science Society of America Journal, 2013, 77, 362-371.	2.2	13
49	Water Retention, Air Exchange and Pore Structure Characteristics after Three Years of Rice Straw Biochar Application to an Acrisol. Soil Science Society of America Journal, 2019, 83, 1664-1671.	2.2	13
50	Repeatability and agreement between methods for determining the Atterberg limits of fineâ€grained soils. Soil Science Society of America Journal, 2020, 84, 21-30.	2.2	12
51	Moisture-dependent Water Repellency of Greenlandic Cultivated Soils. Geoderma, 2021, 402, 115189.	5.1	12
52	Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content. Vadose Zone Journal, 2014, 13, 1-7.	2.2	11
53	Biochar, manure, and super absorbent increased wheat yields and salt redistribution in a salineâ€sodic soil. Agronomy Journal, 2020, 112, 5193-5205.	1.8	11
54	A Simple Method for Determining the Critical Point of the Soil Water Retention Curve. Soil Science Society of America Journal, 2017, 81, 250-258.	2.2	10

#	Article	IF	Citations
55	Validation of water sorption-based clay prediction models for calcareous soils. Journal of Plant Nutrition and Soil Science, 2017, 180, 347-354.	1.9	8
56	Improved estimation of clay content from water content for soils rich in smectite and kaolinite. Geoderma, 2019, 350, 40-45.	5.1	8
57	Comparing Visible–Nearâ€Infrared Spectroscopy and a Pedotransfer Function for Predicting the Dry Region of the Soilâ€Water Retention Curve. Vadose Zone Journal, 2019, 18, 1-13.	2.2	8
58	Soil structure characteristics, functional properties and consistency limits response to corn cob biochar particle size and application rates in a 36-month pot experiment. Soil Research, 2020, 58, 488.	1.1	8
59	Estimating Atterberg Limits of Fineâ€Grained Soils by Visible–Nearâ€Infrared Spectroscopy. Vadose Zone Journal, 2019, 18, 190039.	2.2	7
60	Rice straw biochar effects on Atterberg limits and aggregate characteristics of an Acrisol in Ghana. Archives of Agronomy and Soil Science, 2020, 66, 1861-1872.	2.6	7
61	Combining visible nearâ€infrared spectroscopy and water vapor sorption for soil specific surface area estimation. Vadose Zone Journal, 2020, 19, e20007.	2.2	7
62	New Rootsnap Sensor Reveals the Ameliorating Effect of Biochar on In Situ Root Growth Dynamics of Maize in Sandy Soil. Frontiers in Plant Science, 2020, 11, 949.	3.6	7
63	Estimation of soil specific surface area from adsorbed soil water content. European Journal of Soil Science, 2021, 72, 1718-1725.	3.9	7
64	Effect of rice straw biochar and irrigation on growth, dry matter yield and radiationâ€use efficiency of maize grown on an Acrisol in Ghana. Journal of Agronomy and Crop Science, 2020, 206, 296-307.	3.5	6
65	A new model for soil water vapor sorption isotherms considering adsorption and condensation. Soil Science Society of America Journal, 2021, 85, 195-206.	2.2	6
66	Biochar Amendment Influences Tropical Soil Carbon and Nitrogen Lability. Journal of Soil Science and Plant Nutrition, $0, 1$.	3.4	6
67	Water repellency prediction in highâ€organic Greenlandic soils: Comparing vis–NIRS to pedotransfer functions. Soil Science Society of America Journal, 2022, 86, 643-657.	2.2	6
68	Rice straw biochar and irrigation effect on yield and water productivity of okra. Agronomy Journal, 2020, 112, 3012-3023.	1.8	5
69	Estimating specific surface area: Incorporating the effect of surface roughness and probing molecule size. Soil Science Society of America Journal, 2021, 85, 534-545.	2.2	5
70	Cation exchange capacity and soil pore system play key roles in water vapour sorption. Geoderma, 2022, 424, 116017.	5.1	5
71	Integration of farmers' knowledge and science-based assessment of soil quality for peri-urban vegetable production in Ghana. Renewable Agriculture and Food Systems, 2020, 35, 128-139.	1.8	4
72	Effects of increasing water activity on the relationship between water vapor sorption and clay content. Soil Science Society of America Journal, 2021, 85, 520-525.	2.2	4

#	Article	lF	Citations
73	Linking water vapor sorption to water repellency in soils with high organic carbon contents. Soil Science Society of America Journal, 2021, 85, 1037-1049.	2.2	4
74	Physical characterization of glacial rock flours from fjord deposits in South Greenland–Toward soil amendment. Soil Science Society of America Journal, 2022, 86, 407-422.	2.2	4
75	Evaluation of the potential of feedstock combinations and their biochars for soil amendment. Waste Management and Research, 2022, 40, 932-939.	3.9	4
76	The use of oil palm empty fruit bunches as a soil amendmentto improve growth and yield of crops. A meta-analysis. Agronomy for Sustainable Development, 2022, 42, 1.	5.3	4
77	Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands. Soil Science, 2012, 177, 153-157.	0.9	3
78	Manure distribution as a predictor of N2O emissions from soil. Animal Production Science, 2016, 56, 549.	1.3	3
79	Clay-to-Carbon Ratio Controls the Effect of Herbicide Application on Soil Bacterial Richness and Diversity in a Loamy Field. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	3
80	The feasibility of shortwave infrared imaging and inverse numerical modeling for rapid estimation of soil hydraulic properties. Vadose Zone Journal, 2021, 20, e20089.	2.2	3
81	Short-term effects of rice straw biochar on hydraulic properties and aggregate stability of an Acrisol. Soil Research, 2021, , .	1.1	3
82	Linking litter decomposition to soil physicochemical properties, gas transport, and land use. Soil Science Society of America Journal, 2022, 86, 34-46.	2.2	3
83	Relating soil salinity, clay content and water vapour sorption isotherms. European Journal of Soil Science, 2020, 71, 399-414.	3.9	2
84	Estimating coefficient of linear extensibility using Vis–NIR reflectance spectral data: Comparison of model validation approaches. Vadose Zone Journal, 2020, 19, e20057.	2.2	2
85	Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions. Geoderma, 2021, 402, 115300.	5.1	2
86	Heat and air transport in differently compacted fibre materials. Journal of Industrial Textiles, 2020, , 152808371990038.	2.4	1
87	Does Biochar Particle Size, Application Rate and Irrigation Regime Interact to Affect Soil Water Holding Capacity, Maize Growth and Nutrient Uptake?. Journal of Soil Science and Plant Nutrition, 2021, 21, 3180-3193.	3.4	1
88	Particle densities of cultivated south greenlandic soils can be explained by a threeâ€compartment model, pedotransfer functions, and a vis–NIR spectroscopy model. Soil Science Society of America Journal, 0, , .	2.2	1